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a b s t r a c t 

This paper introduces a model-based approach for a fully automatic delineation of kidney and cortex tis- 

sue from contrast-enhanced abdominal CT scans. The proposed framework, named CorteXpert , consists of 

two new strategies for kidney tissue delineation: cortex model adaptation and non-uniform graph search. 

CorteXpert was validated on a clinical data set of 58 CT scans using the cross-validation evaluation strat- 

egy. The experimental results indicated the state-of-the-art segmentation accuracies (as dice coefficient): 

97.86% ± 2.41% and 97.48% ± 3.18% for kidney and renal cortex delineations, respectively. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Kidney cancer is a life-threatening disease with a high mortal-

ty rate and poor prognosis all over the world, with 3380 0 0 new

ases diagnosed in 2012 ( Ferlay et al., 2013 ). Renal cell carcinoma,

hich arises from the renal cortex, is the most common type of

idney cancer in adults, responsible for approximately 80% of cases

 Garcia et al., 2009 ). There is a lot of evidence to show that par-

ial nephrectomy has become the first treatment of selective re-

al tumors, with equivalent oncological cure and better preserva-

ion of renal function compared to radical nephrectomy ( Russo and

uang, 2008; Clark et al., 2011; Shao et al., 2012 ). To achieve the

est resection plan, surgeons need to identify the location of the

idney portion that would be cut off. Renal transplantation is also

 well-recognized treatment method than hemodialysis. Radiolog-

cal evaluation of potential kidney donors is required to identify

atients with kidneys that function well ( Muto et al., 2011; Yano

t al., 2012; Kato et al., 2011 ). 

Since volumetric kidney and cortex measurements are corre-

ated with the functionality of the kidneys, the pre- and post-
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peration non-invasive measurements of kidney and cortex vol-

mes are clinically important and need a careful evaluation. The

egmentation plays a key role in employing these evaluations, par-

icularly renal cortex volume because it is a better predictor for

etermining kidney functionality. However, there are several chal-

enges in kidney and renal cortex segmentation. First, the inter-

al structures of kidneys are complex and difficult to recognize,

s shown in Fig. 1 (a). Briefly, kidneys contain four major inter-

al structures: cortex, column, medulla, and pelvis. Renal cortex

s connected with the renal column, and its shape can be consid-

red as complex because its inner boundaries are non-smooth and

ocally non-convex. Second, there are several neighboring tissues

r organs, e.g., renal column, muscles, and liver, with similar in-

ensities. This leads to low contrast and blurred boundaries in CT

mages between renal cortex and nearby structures. Therefore, re-

al cortex segmentation using conventional methods such as re-

ion growing may easily leak into its neighbors. Third, image arti-

acts and noise may easily affect the segmentation process. Renal

ortex segmentation can be disturbed by different gray value in-

ervals between renal tissues and artifacts. To address these prob-

ems, prior information (in the form of appearance, shape, or hy-

rid) can be used to separate adjacent organs even with similar

ntensities ( Chen et al., 2009; 2010a,b; 2012a,b; Li et al., 2012; Xi-

ng et al., 2011; Li et al., 2015; Ju et al., 2015 ). However, model-

ng shape of renal cortex is not a trivial task because the anatomy
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Fig. 1. Renal cortex segmentation. (a) A CT Slice; (b) Initial segmented renal cortex; (c) Final segmented renal cortex by our method. 
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of the renal cortex varies largely in different healthy individu-

als, both in shape and size. Besides, tumor and other patholo-

gies can change the anatomical structure of renal cortex signifi-

cantly. In this paper, we propose a novel shape model-based seg-

mentation framework to address the aforementioned challenges in

the segmentation module of the renal surgery planning. The pro-

posed framework is a coarse-to-fine segmentation process ( CorteX-

pert ) that consists of three parts: model construction (Part I), ini-

tialization (Part II), and segmentation (Part III). First, a two-layer

statistical shape model is constructed based on the point distribu-

tion model (PDM) for the purpose of integrating shape variation

into the segmentation process as a shape prior. Then, one of the

layers is used to locate the kidney roughly in the CT image. Au-

tomatic renal cortex model adaptation is performed progressively

in the space spanned by the eigenvectors computed by princi-

pal component analysis (PCA) of the PDM. In the delineation part,

the multi-scale first order partial derivative boundary function is

used to define “true boundaries” of renal cortex integrated with

a non-uniform graph search (NUGS) method by utilizing local in-

tensity distribution. The presented framework improves our initial

approach ( Chen et al., 2012a; Li et al., 2012 ), which can be con-

sidered as the state-of-the-art system. Summary of the presented

framework’s steps is the following. 

• First, we use a precise clinical definition of the renal cortex,

which many studies fail to do. Although the renal column

and the cortex are functionally two different compartments,

they have similar intensity distribution. In our implementa-

tion, we use two-layer statistical shape models to separate renal

columns from cortex during the model construction. 
• Second, we initialize the localization algorithm for the outer

and the inner layers of the renal cortex. In our new initializa-

tion algorithm, less number of iteration is required for conver-

gence and the overall initialization system is less sensitive to

perturbations, as shown in Fig. 1 (b). 
• Third, our algorithm is different from the registration/atlas-

based methods where registration may likely fail in the local

minimum of the distance function, and the computational cost

is huge. Instead, we develop a purely delineation-based algo-

rithm, which is not only accurate but also extremely efficient. 
• Fourth, to capture non-uniform intensity distribution that

leads to better delineation performance, we introduce a non-

uniform graph search approach. Nodes of the graph are non-

equidistantly and adaptively sampled according to the initial

surface and the non-uniform intensity distribution. The multi-

scale boundary responses of first order partial derivatives are

used to compute the weights of nodes for the outer surface

detection. The filtered image is used to compute the weights

of nodes for inner surface detection. Even in low contrast and
slender regions as shown in Fig. 1 (c), our proposed algorithm is

still highly accurate and robust in detecting and delineating the

kidney and its compartments. 

. Related work 

There are several studies in the literature for kidney and renal

ortex segmentation using CT and MR images, including both semi-

utomatic ( de Priester et al., 2001; Shen et al., 2009; Chevaillier

t al., 2008; Boykov et al., 2001; Rusinek et al., 2007; Sun et al.,

0 04; Song et al., 20 08; Padigala et al., 2009; Chen et al., 2009;

him et al., 2009 ) and fully automatic methods ( Ali et al., 2007;

öllner et al., 2009; Tang et al., 2010 ). For kidney segmentation

n dynamic MR images, not only the spatial information but also

he time intensity curves (TIC) were used. Shen et al. (2009) pre-

ented a semi-automatic kidney segmentation method based on

he morphological 3D h-maxima transform from MR images. Sim-

larly, Chevaillier et al. (2008) proposed a semi-automated split

nd merge method based on TIC. Boykov et al. (2001) and

usinek et al. (2007) developed a temporal Markov model to de-

cribe the TIC for each pixel followed by the min-cut algorithm. Al-

hough the performance was at a clinically acceptable level, speci-

ying the seed points for the kidney segmentation made it imprac-

ical due to sensitivity in seed localizations. For registration-based

ethods, Sun et al. (2004) presented an image registration algo-

ithm to delineate the renal cortex for dynamic renal perfusion MR

mages. Another registration-based approach ( Zöllner et al., 2009 )

eparated the inner compartments of kidney by k-means clustering

fter a non-rigid registration. Lately, Song et al. (2008) presented a

D level set framework for dynamic MR images kidney segmen-

ation. The method combined information from spatial anatomical

tructures and temporal dynamics. Despite all the progress in MR

mage processing for renal analysis, CT scan is still considered to

e the clinical standard for the quantification of renal diseases. 

Previous investigations ( Shen et al., 2009; Boykov et al., 2001;

li et al., 2007; Tang et al., 2010; Zöllner et al., 2009 ) consid-

red renal cortex and column as a single tissue type in images al-

hough they are functionally and anatomically different. To make

 strict definition of the renal cortex, it would be a good choice

o consider only the out-layer of the kidney as a cortex be-

ause the renal columns have anatomical and functional differ-

nces ( Padigala et al., 2009 ). Chen et al. (2012a ) used a pseudo-

D oriented active appearance model method to locate a kidney,

nd combined morphologic operations and an iterative shape con-

trained graph cut method are used to segment the renal cortex.

i et al. (2012) applied an implicit shape registration method to

oughly initialize the whole kidney and then utilized multiple sur-

ace graph searching to detect the renal cortex. 
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Fig. 2. The proposed corteXpert framework. 
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Fig. 3. Renal cortex model construction. (a) A manually segmented renal cortex. 

(b) A simplified mesh of a manually segmented renal cortex based on quadric er- 

ror metric. (c) Aligned renal cortex meshes using the minimum description length 

algorithm. (d) The mean shape of the renal cortex. 
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. Method 

Fig. 2 shows the flowchart of the proposed method. In the

hape model construction part, two surfaces of the renal cortex are

egmented manually in training images, and these shapes are used

o build PDMs. In the initialization part, the renal cortex is local-

zed by applying the generalized Hough transform (GHT) and the

ortex model adaptation method. In the segmentation part, a non-

niform multiple surface graph is constructed to obtain the final

enal cortex segmentation. The details of each part are given in the

ollowing sub-sections. 

.1. Part I: Model construction 

A priori knowledge can be learned from a representative set of

raining images along with different meshes from different sub-

ects. The derived information can then be associated with the

eshes to automatically segment volume of interests. An impor-

ant issue thus is to establish surface correspondence between

he training meshes. However, adapting two uncalibrated meshes

ith some motions such as significant rotation and scale changes

till remains a challenging problem. Although semi-automatic or

ully automatic landmark generation methods ( Dryden and Mar-

ia, 1998; Davies et al., 2002 ) can be employed, numerous lim-

tations exist. For these reasons, both the outer and the inner

ayers of the renal cortex are manually labeled with two non-

verlapped regions in a slice-by-slice manner. The labeled binary

mages are converted into triangulated meshes using the marching

ube algorithm ( Lorensen and Cline, 1987 ) for representing both

he outer and the inner layer surfaces. The minimum description

ength (MDL) algorithm by Heimann et al. (2006) is next used to

stablish a vertex correspondence between the reference meshes

or both the outer and the inner layers ( Fig. 3 ). In MDL, a confor-

al parameterization function is used to describe the vertex distri-

ution on the training shapes. Next, vertex positions are modified

ocally without disturbing established correspondences through a

radient descent optimization employed for minimization of the

DL cost. To reduce the time complexity of the MDL process, all

eshes are simplified using the quadric error metric ( Hoppe, 1999 )

ith the same V vertices connected in T triangles as shown in

ig. 3 . 

To establish vertex correspondence for both surface layers

f different renal cortex shapes, meshes need to be aligned

n a Cartesian coordinate system via similarity transformation.
his also allows analysis of inter-patient and inter-phase shape

ariability. The similarity transformation in this case consists

f three translation, three rotation, and one scaling parameter

ith a total of seven degrees of freedom in 3-D space ( T x , T y ,

 z are the three parameters translated along the three axes,

, ϕ, ω are the three angles of rotation about three axes, s

s the scaling parameter). The vertices on two corresponding

eshes of the renal cortex can be expressed as a 1-D vector u =
( u o , u i ) 

T , where, u o = ( x o1 , y o1 , z o1 , x o2 , y o2 , z o2 , · · · x oN o , y oN o , z oN o )

re the vertex coordinates of the outer layer, u i =
( x i 1 , y i 1 , z i 1 , x i 2 , y i 2 , z i 2 , · · · x iN i , y iN i , z iN i ) are the vertex coordi- 

ates of inner layer, N o and N i are the number of vertices for outer

nd inner surfaces respectively ( N o = N i ). Although the similarity

ransformation is done using the unit quaternion algorithm pro-

osed by Horn (1987) , other methods can also be used instead

 Bagci et al., 2012 ). 

Inter-patient and inter-phase shape variability of the outer lay-

rs and the inner layers can be learned from the consistent set of

raining meshes using PCA. The PDM can be used to describe shape

ariability. With the combination of similarity transformation, the

esulting PDM can be expressed as 

= T −1 

( 

�̄ + 

M ∑ 

m =1 

λm 

p m 

) 

, (1) 

here, p m 

is the principal mode of variation obtained through PCA.

m 

is the corresponding weight for each principal mode, T −1 is the

nversion of similarity transformation from registered shape coor-
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Fig. 4. Kidney Localization. (a) The original image; (b) The Gaussian filtered image with the thresholded image I b ; (c) The resulting GHT image with mean renal cortex shape 

model (yellow curves) and translated mean renal cortex (red curves); (d) The original image with mean renal cortex shape model (yellow curves) and translated mean renal 

cortex shape model (red curves). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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dinate system to the original coordinate system, �̄ is the mean

shape of the training set, and M is the number of variation modes.

For the outer layer, the mean shape is computed by 

�̄o = 

1 

N o 

N o ∑ 

k =1 

T 
(
u 

k 
o 

)
, (2)

where, u 

k 
o is the 1-D vertex coordinate vector of the outer mesh

of the k th training mesh. Similarly, the mean shape for the inner

layer is computed by 

�̄i = 

1 

N i 

N i ∑ 

k =1 

T 
(
u 

k 
i 

)
. (3)

where, u 

k 
i 

is the 1-D vertex coordinate vector of the inner mesh

of the k th training mesh. The mean mesh derived from the train-

ing set is shown in Fig. 3 (d). The mean renal cortex shape can be

represented as 
(
�̄o , �̄i 

)
. 

3.2. Part II: Model initialization 

Automatic localization of model assembly is not a trivial task

for at least two reasons. (1) The inner surface of the renal cor-

tex may not be simply created from the recognized kidney due to

varying thickness levels of the renal cortex. (2) The number of ver-

tices should not be too high to avoid suboptimal localization and

segmentation. 

3.2.1. Image smoothing and kidney localization 

Noise is inherent in medical images and needs to be minimized

prior to image analysis tasks as shown in Fig. 4 (a). In this study,

we use Gaussian filtering ( Whitaker and Xue, 2001 ). The the in-

tensity range of the output is normalized to [ I min , I max ] = [0 , 255]

as shown in Fig. 4 (b). 

For localization of model assembly, we use the generalized

Hough transform (GHT) by Khoshelham (2007) , which is proved to

be a robust and powerful method for detecting any arbitrary shape

in an image. In the GHT training process, the triangulated mesh

of the average outer mesh is employed as a template shape in or-

der to reduce the dimensionality of the parameter space. The grav-

ity center c is used as the reference point. For each vertex on the

mean outer mesh �̄o , the normal orientation can be represented

as the azimuthal and revolution angles ( α and β respectively) of

a spherical coordinate system, and the two angles are discretized

as two entries reference table (look-up table) with the correspond-

ing angle steps t α and t β . The vector r p pointing from the mesh

to the center is indexed by α and β , and stored in the look-up ta-

ble. For kidney localization, the thresholded image I b is computed

by [ b(I max − I min ) + I min , I max ] . Since some adjacent tissues are sim-

ilar to the kidney, morphological opening can be used to remove

those small structures as shown in Fig. 4 (b). Then the GHT voting
cores are computed according to the gradient of I b as shown in

ig. 4 (c). The normalized gradient is represented as the azimuthal

nd revolution angles ( α and β respectively) of a spherical coordi-

ate system, and also the two angles are discretized as two entries

eference table (look-up table) with the corresponding angle steps

 α and t β . The vector r p pointing from the curve point to the po-

ential center is indexed by α and β . The voting score of the po-

ential center is increased. The mean renal cortex shape 
(
�̄o , �̄i 

)
s translated to the point with the maximal GHT voting score as

hown in Fig. 4 (c). 

.2.2. Model adaptation 

In model adaption, we simply deform both layers of the PDM

ocally to match into the target boundaries. For this task, we utilize

he idea of shape-constrained deformable models ( Ecabert et al.,

008 ). Briefly, the two meshes are adapted to the boundaries of the

enal cortex and the initial image from the outer mesh is matched

o the thresholded image I b in two alternating steps. In each it-

ration, the first step is the deformation of the outer layer mesh

rom the initial renal cortex by progressively detecting the candi-

ate kidney boundary along the normal vertices so that the de-

ormed outer layer mesh �τ
o can be driven to the candidate kidney

oundary �t . In the second step, the deformed outer layer mesh
τ
o is registered to the mean outer layer model �̄o so as to gener-

te a PDM of renal cortex 
(
�λ

o , �
λ
i 

)
, and then the PDM of the renal

ortex is considered as initial renal cortex and constrains the defor-

ation of 
(
�λ

o , �
λ
i 

)
(initially the translated mean outer and inner

ayer meshes). This iterative process can be described as minimiz-

ng the distance D between the deformed meshes and the target

oundary. The distance function can be defined as 

 = D region + κD sur face (4)

here, D region denotes a region term, which measures the distance

etween �τ
o and �t in the signed Euclidean distance field; �t rep-

esents the mesh converted from the thresholded image I b ; D surface 

enotes a boundary term which measures Euclidean distance be-

ween �τ
o and �λ

o , �t ; v represents the corresponding vertex on

he �τ
o , �

λ
o and �t ; κ controls the balance between the region and

urface constraints. 

A. Model Deformation 

For each vertex v i on the outer layer mesh �τ
o , the boundary

andidate is searched along the normal vector n i of the vertex at

iscrete positions as 

 i j = v i + jδn i , j = −n m 

, · · · , −1 , 0 , 1 , · · · , n m 

(5)

here δ is the searching step which depends on the size of the

idney. It is computed according to the average length of edges,

hich connects the current vertex and its adjacent vertices. For

ertex v i , the mean length l of adjacent edges is computed, and

hen the searching step δ is set l . If vertex v i is inside the kid-

ey (in the foreground of the binary image I b ) and the vertex v ij 
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Fig. 5. Renal cortex model adaptation. (a) The generated renal cortex shape model with −2 
√ 

˜ λm ; (b) The generated renal cortex shape model with −
√ 

˜ λm ; (c) The generated 

renal cortex shape model with −0 . 5 
√ 

˜ λm ; (d) The mean shape model of renal cortex; (e) The generated renal cortex with 0 . 5 
√ 

˜ λm ; (f) The generated renal cortex shape 

model with 
√ 

˜ λm ; (g) The generated renal cortex shape model with 2 
√ 

˜ λm . (h) The mean shape model of renal cortex in the test image; (i) The renal cortex shape model 

is moved based on the center of the segmented kidney using the GHT; (j)–(l) The renal cortex shape model is adapted in the test image after the 1st to 4th iterations in 

eigen-space; (l) The final outer and inner surfaces with model adaptation. 
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s searched along the normal vector n i and j > n t , and then v i is

pdated by v ij ; if vertex v i is outside the kidney (in the back-

round of the binary image I b ) and vertex v ij is searched along the

nverse normal vector −n i and | j | > n t , and then v i is updated by

 ij . n m 

is the maximal searching number, n t is a moving threshold

alue, describing kidney region detection and small structures can

e neglected in order to improve the robustness to noise and non-

idney structures in the adjacent region. n m 

depends on the voxel

pacings and the distance between the initial outer layer mesh and

he kidney boundary in the binary image I b . 

After the outer layer mesh �τ
o is deformed, it is converted into

 binary image I τo . The Euclidean distance transformation algorithm

 Meijster et al., 20 0 0 ) is used to compute the signed Euclidean dis-

ance field �τ for deformed mesh and �t for the binary image I b .

he distance of mesh deformation can be computed by 

 region = 

1 

n r 

∑ 

q 

( �τ ( q ) − �t ( q ) ) (6) 

here, n r denotes a normalization parameter in the local region. q

epresents a coordinate vector of a voxel in Euclidean distance field

; In the implementation, the signed Euclidean distance fields �τ

or deformed mesh and �t for coarse boundary can be calculated

ocally for increased memory efficiency and decreased computation

ime. n r is a normalization factor. 

B. Parametric Adaptation 

In the process of mesh deformation, the outer layer mesh �τ
o 

ay be far from the kidney boundary �t . The desirable boundaries

ay be near to surrounding organs; this may contribute to mesh

eformation. To utilize the shape prior, parametric adaptation is

mployed to constrain the mesh deformation. In this condition, the

ertex positions are free variables and can be represented as mean

hape and shape variability. A renal cortex PDM 

(
�λ

o , �
λ
i 

)
is gener-

ted based on the mean shape and shape variability obtained from

q. (1) and (2) . This process can be expressed as 

�λ
o , �

λ
i 

)
= T −1 

( 

�̄o + 

M ∑ 

m =1 

λm 

p o,m 

, �̄i + 

M ∑ 

m =1 

λm 

p i,m 

) 

(7) 

here, b m 

is the weight of the principal mode p m 

. 
At the beginning of the parametric adaptation, the deformed

uter layer mesh �τ
o is registered to the mean outer layer

odel �̄o using the unit quaternion algorithm proposed by

orn (1987) and get similarity transformation parameters T and

egistered mesh T ( �τ
o ) . The displacement 
�τ

o is computed as 

�τ
o = T ( �τ

o ) − �
τ

o = 

M ∑ 

m =1 

b m 

p o,m 

(8) 

he weight b m 

is computed using the Least Squares method, and

s then truncated b m 

∈ [ −√ 

3 λm 

, 
√ 

3 λm 

] . Examples are shown in

ig. 5 (a)–(g) when the weight b m 

of PDM is changed. The PDM of

enal cortex 
(
�λ

o , �
λ
i 

)
is generated according to Eq. (7) . 

During in the process of mesh deformation, the PDM of renal

ortex 
(
�λ

o , �
λ
i 

)
is also adapted to constrain the deformation of

he outer layer mesh �τ
o . The task can be accomplished by mini-

izing the sum of surface distances between �τ
o and �λ

o , �
τ
o and

t , which integrate and balance the shape prior and image bound-

ry information. The function to minimize is defined as 

 sur face ( v ) = 

1 

N s 

(
ω 1 d 

(
�τ

o (v ) , �λ
o (v ) 

)
+ ω 2 d 

(
�τ

o (v ) , �t (v ) 
)

+ ω 3 

∑ 

v 
1 /g 

(
�λ

i ( v ) 
))

(9) 

here, n s denotes a normalization parameter; ω 1 , ω 2 and ω 3 are

he weights balancing the shape prior and image boundary infor-

ation; g is gradient magnitude of the smoothed image. 

In this phase, the initial outer mesh �τ
o of the renal cortex is

dapted to the coarse boundary of the kidney in the thresholded

mage I b by using the model adaptation algorithm. The process can

e iteratively employed to search the desirable meshes of the renal

ortex based on the previously adapted meshes of the renal cortex

y model deformation and parametric adaptation successively. The

bjective function in Eq. (4) is then computed. The model adap-

ation algorithm is stopped when the distance difference 
D be-

ween two iterations is lower than a threshold value D t . The whole

rocess is illustrated in Fig. 5 (j)-(l). 
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3.3. Non-uniform graph search 

The initialized shapes are assumed to be close to the true

boundaries. The graph search algorithm is used to determine

the new position of the vertices in the initialized renal cortex

( �τ
o , �

τ
i 
) . Compared to the previous work by Li et al. (2012) ,

herein a novel graph is constructed and a new cost function is for-

mulated based on multi-scale boundary detection, allowing detec-

tion of the optimal surfaces of renal cortex. 

As developed in the LOGISMOS framework by Li et al. (2006) ,

Garvin et al. (2008) , and Yin et al. (2010) , optimal surface detection

can be transformed into finding a minimum-cost closed set in a

corresponding vertex-weighted graph using max-flow/min-cut al-

gorithm ( Boykov and Kolmogorov, 2004 ). Briefly, this involves two

important tasks. First, a 3-D graph for each surface should be prop-

erly constructed corresponding to the original image, especially for

those detected surfaces that do not coincide with the intersection

of the z-axis. Second, a cost function should be formulated, since it

measures the unlikeliness that each node in the graph belongs on a

particular surface, and determines the set of feasible surfaces with

the lowest cost. The two important tasks were done independently

by Li et al. (2012) , which may not lead to effective multiple sur-

face detection. Therefore, the first step of the proposed approach is

the computation of a multi-scale cost function and generation of a

multi-scale sampling space for the test image. Then, a non-uniform

graph is constructed to detect surfaces optimally. 

3.3.1. Multi-scale boundary detection 

The multi-scale boundary function measures surface likeliness

by evaluating boundary information in a scale-space approach. The

gradient magnitude of the input image is used to compute the

weight of the node in graph and uniformly-spaced sample the

node may lead to false detection of the outer surface as shown

in Fig. 6 (a) and (d). In the Hessian scale space, using a too small

scale for the computation of the boundary information may not

detect weak boundaries like in the inner surface of the renal cortex

as shown in Fig. 6 (e). On the other hand, a large scale may result

in false responses and undesired fusion of nearby strong bound-

aries ( Fig. 6 (b)). Furthermore, the Hessian matrix for a voxel in

an image is computed by the convolution with multi-scale second

order partial derivatives of 3D Gaussian functions ( Li et al., 2012;

Frangi et al., 1998 ) (shown in Fig. 6 (b)), and boundary responses go

away from the true boundaries of an object as the scale is increas-

ing (shown in Fig. 6 (b) and (e)). To address this problem, another

scale-space by the first order partial derivatives is used to compute

the boundary information, non-uniformly sample the node and de-

fine the boundary in the scale-space, 

B ( x, y, z ) = max 
σmin ≤σs ≤σmax 

(
σγ

s ‖ 

∇I σs ( x, y, z ) ‖ 

)
, (10)

where σ s denotes the standard deviation of Gaussian functions,

which are a discretized value between σ min and σ max using a lin-

ear scale, ‖ · ‖ is the computation of gradient magnitude, γ is the

scale adapted parameter, ∇I σ ( x, y, z ) is the computation of gradient

based on the first order partial derivatives of Gaussian functions,

i.e., 

∇ I σs ( x, y, z ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∇ I x σs 
( x, y, z ) = I ( x, y, z ) ∗ G 

x 
σs 

( x, y, z ) 

∇ I y σs 
( x, y, z ) = I ( x, y, z ) ∗ G 

y 
σs 

( x, y, z ) 

∇ I z σs 
( x, y, z ) = I ( x, y, z ) ∗ G 

z 
σs 

( x, y, z ) 

. (11)

where, ∗ is the convolution operation; G 

x 
σs 

( x, y, z ) , G 

y 
σs ( x, y, z ) and

G 

z 
σs 

( x, y, z ) are the first order partial derivatives of Gaussian func-

tions. 
.3.2. Non-uniform graph construction 

The multi-scale boundary responses are obtained by selecting

he maximum response over the range of all scales ( Eq. (10) ). The

cale at which the response is maximal is further used to estimate

he sampling steps for subsequent graph construction as shown

n Fig. 7 (b). A weighted and directed graph G is constructed in a

arrowband around the initialized PDM ( �τ
o , �

τ
i 
) . Note that the

raph G corresponding to the outer or inner surface of the initial-

zed renal cortex, respectively. As Fig. 7 (a) illustrates, each node of

 column in G o for the outer surface or G i for the inner surface

s sampled along the gradient direction in Euclidean distance field

f an initial kidney �τ
o . This procedure is designed in an adaptive

ashion to detect optimal surface and avoid incorrect local surface

ropagation ( Li et al., 2012 ). The sampling steps for the k th vertex

 k on the outer or inner surface are computed along the gradi-

nt direction g k ( p 

i 
k 
) by using the distance to the desirable surface:

he smaller step size for the neighboring region of the desirable

urface while the larger step size for the regions far from the de-

irable surface. To address this, the intra-column sampling step is

omputed by 

 

intra 
k ( p k ) = f d ( B ( p k ) ) , (12)

here p k indicates the coordinate of the k th vertex on the outer or

nner surface along the gradient direction g k ( p 

i 
k 
) (or the opposite

irection −g k ( p 

i 
k 
) ), and f d is a linear function mapping boundary

nformation into a step size, i.e., high value to small step size and

ice versa. Once the sampled points are obtained to generate the

olumns, the cost can be computed for each node in the graph G .

omputation of coordinates is heavy; therefore, herein coordinates

or each sampled point are recursively computed from the initial-

zed mesh of the outer surface as 

 k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p 

i 
k 

= p 

i −1 
k 

+ d intra 
k 

(
p k 

i −1 
)

· g k 

(
p 

i −1 
k 

)
·d intra 

k 

(
p 

i −1 
k 

)
, 

1 ≤ i ≤ N u ;

p 

j 

k 
= p 

j−1 

k 
− d intra 

k 

(
p 

j−1 

k 

)
· g k 

(
p 

j−1 

k 

)
·d intra 

k 

(
p 

j−1 

k 

)
, 

1 ≤ j ≤ N b ;

p 

i 
k 

= p 

j 

k 
= v k = ( x k , y k , z k ) , i = j = 0 . 

(13)

here p 

i 
k 

is coordinate of the i th sampled point along the gradient

irection g k ( p 

i −1 
k 

) ( i = 1 , · · · , N u ), p 

j 

k 
is coordinate of the j th sam-

led point along the gradient direction g k ( p 

j−1 

k 
) ( j = 1 , · · · , N b ),

nd N u and N b are the number of sampled points along and op-

osite the normal direction, respectively. 

After all nodes are obtained for the outer or inner surface,

odes in graph G can be connected with three types of weighted

nd directed arcs: the intra-column arc E intra , the inter-column arc

 

inter , and the terminal arc E terminal . The intra-column arc E intra 

onnects two neighboring nodes in a column from up to bottom as

hown in Fig. 7 (b) (the green arrows). The inter-column arc E inter 

onnects two neighboring nodes in two neighboring columns from

p to bottom as shown in Fig. 7 (b) (the black arrows). The terminal

rc E terminal connects all nodes in G to two terminal nodes S or T ,

f the weight is positive then the node is connected to the terminal

ode S ; otherwise, the node is connected to the terminal node T .

or the k th column in a graph, a node can be denoted as V l v 
k 

for

he graph G ( l v = 1 , 2 , · · · , N u + N b + 1 ). The node in the neighbor-

ng k ′ th column can be denoted as V l v 
k ′ . Mathematically, the three

ypes of arcs can be written as, 

 

intra = 

〈
V 

l v 
k 

, V 

l v −1 
k 

〉
, (14)

 

inter = 

〈 
V 

l v 
k 

, V 

l v −μ
k ′ 

〉 
, (15)
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Fig. 6. Boundary computation in multi-scale space. (a) The gradient magnitude image is used as the cost image for the refinement of the outer surface (the red curve); (b) 

Hessian-based image ( σs = 3 . 0 ) is used as the cost image for the refinement of the inner surface (the red curve); (c) The original image, the refined outer and inner surfaces 

(the red curves) using the method proposed by Li et al. (2012) ; (d) The gradient magnitude image is used as the cost image for the refinement of the outer surface (the red 

curve), and graph search is applied iteratively; (e) Hessian-based image ( σs = 1 . 0 ) is used as the cost image for the refinement of the inner surface (the red curve); (f) The 

original image and the refined outer and inner surfaces (the red curves) using the method proposed by Li et al. (2012) ; (g) The boundary responses in multiple scale space 

by the first order partial derivatives is used as the cost image for the refinement of the outer surface by using the proposed non-uniform graph search (the red curve); (h) 

The filtered image is used as the cost image for the refinement of the inner surface (the red curve) by using the proposed non-uniform graph search (the red curve); (i) 

The original image, the refined outer and inner surfaces (the red curves) using by using the proposed non-uniform graph search (the red curves). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

E

w  

o  

t  

t  

o  

i⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
 

terminal = 

{ 〈
S, V 

l v 
k 

〉
, ω 

(
V 

l v 
k 

)
> 0 ;〈

V 

l v 
k 

, T 
〉
, ω 

(
V 

l v 
k 

)
≤ 0 ;

(16) 

here μ is the inter-column smoothness constraint for the outer

r inner surface. ω is the weight of a node V l v 
k 

. For the first two

ypes of arcs E intra and E inter , the cost is set to infinity. The cost of

erminal arcs can be defined as the absolute value of the weight

f the corresponding node. The weight of a node for the outer or
nner surface is defined as 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω 

(
V 

l v 
ok 

)
= −B 

(
p l v 

ok 

)
+ B 

(
p l v −1 

ok 

)
, 

l v = 2 , 3 , · · · , 

N u + N b + 1 ;
ω 

(
V 

l v 
ok 

)
= −B 

(
p l v 

ok 

)
, l v = 1 ;

ω 

(
V 

l v 
ik 

)
= −I 

(
p l v 

ik 

)
+ I 

(
p l v −1 

ik 

)
, 

l v = 2 , 3 , · · · , 

N u + N b + 1 ;
ω 

(
V 

l v 
ik 

)
= −I 

(
p l v 

ik 

)
, l v = 1 , 

(17) 
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Fig. 7. Graph Construction. (a) The initialized outer and inner surfaces; (b) The proposed non-uniform graph for optimal surface detection; (c) The refined outer and inner 

surfaces by using the proposed non-uniform graph for optimal surface detection. 

Fig. 8. Final renal cortex generation. (a) The binary images of the outer and inner surfaces; (b) The coarse renal cortex; (c) The refined renal cortex. 
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where, ω( V l v 
ok 

) is the weight of the node in the graph G o for

the outer surface, B ( p 

l v 
ok 

) is the boundary information in multi-

scale space for the node V l v 
ok 

in the graph G o for the outer surface,

p 

l v 
ok 

computed by Eq. (13) is the coordinate of the node V l v 
ok 

in the

boundary image; ω( V l v 
ik 

) is the weight of the node in the graph G i 

for the inner surface, I( p 

l v 
ik 

) is the filtered image intensity for the

node V l v 
ik 

in the graph G i for the inner surface, p 

l v 
ik 

is also the co-

ordinate of the node V l v 
ik 

in the boundary image and computed as

Eq. (13) . There are two reasons why the weights of nodes for the

inner surface is computed according to the filtered image inten-

sity. First, the second order partial derivatives of images may lead

to boundary deviation as illustrated in Fig. 6 ; second, the inner

boundary is much weaker than the outer boundary, and the first

order partial derivative is small, the under-segmentation or over-

segmentation of the inner surface may result. The outer and inner

surfaces are converted into binary images as shown in Fig. 8 (a).

The coarse renal cortex is then obtained by subtracting the in-

ner binary image from the outer binary image. A simple thresh-

olding method is applied to the filtered image combined with the

coarse renal cortex as shown in Fig. 8 (b). For each slice in ax-

ial view as shown in Fig. 8 (b), the run length encoding method

( Ibanez et al., 2005 ) is used to label the connected components

and represent the binary objects. The connected component with

the largest number of pixels is kept in the binary label image in or-

der to remove small regions such as renal arteries and renal veins

as shown in Fig. 8 (c). 

4. Parameter selection for reproducible research 

1) Renal Cortex Model Construction 

In creating statistical shape of renal cortex, the kidneys and

closed inner regions including medulla and pelvis were manually
raced for each original volume. The binary volume of kidneys and

losed inner regions were subsequently transformed into outer sur-

aces and inner surfaces, respectively. The two types of surfaces

ere simplified as triangle meshes with 30 0 0 vertices. After ob-

aining the corresponding relationship and parameters of similarity

ransformation, the amount of shape variance of outer and inner

urfaces were truncated at 98% of the total variation present in the

raining set. 

2) Renal Cortex Initialization 

The variance of the Gaussian smoothing filter was set to 1, and

ts kernel width was set to 9. The corresponding angle steps t α and

 β were both set to 9 °. A threshold value b = 0 . 4 was used to ob-

ain a rough contour of the kidney. A morphological opening with

pherical structuring elements (radius was set to 2) was used to

emove small structures. κ = 25 typically can control the balance

etween region and surface constraints. In our experiments, the

oxel spacing range is 0.5 mm to 5.0 mm; n t = 5 were appropri-

te to efficiently deform the initial surface. For the consideration

f memory usage, the number of sampling points n m 

was set to

0. The bounding box is computed for the outer layer mesh and

s broadened with 20 voxels in the six end points so as to obtain

 local binary image and compute the signed Euclidean distance

elds. In the implementation of renal cortex model adaptation, the

ean shape model of renal cortex was adapted in the eigen-space

ith the truncation between −
√ 

3 ̃ λm 

to 
√ 

3 ̃ λm 

of the eigenvalues

omputed by PCA. Renal cortex initialization is stopped as the dis-

ance difference 
D is lower than the threshold value D t = 0 . 01 . 

3) Renal Cortex Segmentation 

After obtaining the initial renal cortex, a local rectangular re-

ion extending the bounding box by 50 pixels was used to de-

ect the outer and inner surface. The local image was linearly in-

erpolated higher resolutions with voxel spacings 0.25 mm × 0.25

m × 0.25 mm. In this study, we used the curvature anisotropic
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iffusion filtering ( Whitaker and Xue, 2001 ), which enhances

he renal cortex boundaries while minimizing the noise. When

moothing by this filter, the conductance parameter λa was set to

, the time step t a was 0.06, the number of iterations n a was typ-

cally set to 10. In terms of computing the multi-scale boundary,

he scales σ s were set as 1.0, 1.5 and 2.0, respectively, and the scale

dapted parameter γ = 0 . 6 . Based on the minimal and the maxi-

al scales, the intra-column sampling step d intra 
ok 

( p ok ) was linearly

apped to [0.01 mm, 0.6 mm] and d intra 
ik 

( p ik ) was linearly mapped

o [0.1 mm, 0.5 mm] according to Eq. (12) . The number of sampled

oints N u and N b was 15. The smoothness constraint μ was set

o 1. 

. Experiments 

.1. Subject data 

The proposed method was tested on a clinical CT data set

onsisting of 58 abdominal volume datasets acquired during pre-

perative screening and containing contrast-enhanced images ac-

uired from two different types of CT scanners (GE Medical sys-

ems, LightSpeed Ultra; and Philips, Mx80 0 0 IDT 16). The pixel size

aried from 0.63 to 1 mm, slice thickness from 0.5 to 5 mm and

lice numbers from 54 to 525. The reference delineation was pro-

ided by experienced experts. 

.2. Evaluation metrics and comparisons 

Eight surface- and volume-based segmentation metrics were

sed to evaluate the results of the proposed approach ( Heimann

t al., 2009; Li et al., 2012 ): Average Symmetric Surface Distance

in mm) (ASSD), Average Symmetric Root Mean Square Surface Dis-

ance (in mm) (ASRMSSD), Signed Relative Volume Difference (%)

SRVD), Volume Overlap Error (%) (VOE), True Positive Fraction (%)

TPF), False Positive Fraction (%) (FPF), and Dice Similarity Coeffi-

ient (%) (DSC). Paired t-tests were used to compare the segmen-

ation errors in DSC and a p -value less than 0.05 was considered

tatistically significant. 

To quantitatively evaluate the performance of our method, we

ompared the segmentation results to previously established meth-

ds: the graph cut based method ( Chen et al., 2012a ), Traditional

raph Search method (TGS), Iterative Traditional Graph Search

ethod (ITGS), the Hessian based graph search method ( Li et al.,

012 ), the random forest based method ( Jin et al., 2016 ), and our

roposed Non-Uniform Graph Search (NUGS). We used the cross-

alidation evaluation strategy, one data set consists of 36 CT scans

nd the other contains 22 CT scans. Two renal cortex shape mod-

ls were trained for cross-initialization for TGS and NUGS, and two

andom forest classifiers were also trained for renal cortex seg-

entation for the random forest based method. Our method was

mplemented in C++ and tested on a 64-bit desktop PC (3.1 GHz

ore (TM) i5-3450 CPU and 16 GB RAM). 

.3. Experimental results 

.3.1. Kidney segmentation 

We compared our approach with the closely related methods:

hen et al. (2012a ), Jin et al. (2016) , TGS, ITGS and Li et al. (2012) .

o make a fair comparison to the most closely related method:

GS and ITGS, the same kidney segmentation framework is used

n these graph search based methods, i.e., the same shape cor-

espondence establishment, shape initialization strategy and post-

rocessing. The only difference is the graph search optimization

ethod used to refine the kidney surface. In TGS and ITGS, the

eight of the node was computed according to the gradient mag-

itude of the filtered images to compute the weights of nodes and

etect the final outer surface. 
Fig. 9 compares one kidney segmentation case between initial-

zation, the random forest based method ( Jin et al., 2016 ), TGS,

TGS and our NUGS method in a challenging case where the con-

rast between renal cortex and renal medulla is the similar as that

etween renal cortex and background. One original image slice was

hown in Fig. 9 (a). The 3D visualization of reference segmenta-

ion in two view points was shown in Fig. 9 (b). As can be seen

n Fig. 9 (c), the initial outer surface was coarsely detected by using

he model adaptation procedure; however, one part of the surface

topped at the boundary between renal cortex and renal medulla

ince the intensity value is very low and close to the background

ear the liver. Thus, surface distance between the initialized outer

urface and reference segmentation achieved to 10.1mm as shown

n Fig. 9 (d). Fig. 9 (g) shows the gradient magnitude image was

sed to compute the weight of the node for TGS, and the de-

ected outer surface still stopped at the boundary between renal

ortex and renal medulla. Even though the ITGS method was em-

loyed, the detected outer surface did not still moved to the outer

oundary of the kidney as shown in Fig. 9 (j)-(k). As can be seen

n Fig. 9 (m)-(n), the multi-scale boundary image was used to com-

ute the weight of the node and the proposed non-uniform graph

earch method successfully made the initial outer surface move to

he outer boundary of the kidney. By contrast, surface distance was

uch smaller between the outer surface by using the proposed

on-uniform graph search method and reference segmentation as

hown in Fig. 9 (o). 

Fig. 10 compares one kidney segmentation case between ini-

ialization, the random forest based method ( Jin et al., 2016 ), TGS,

TGS and our NUGS method in a challenging case where one pole

f the kidney is slender. One original image slice in coronal view

as shown in Fig. 10 (a). The 3D visualization of reference seg-

entation in two view points was shown in Fig. 10 (b). In the

odel adaptation step, the initial outer surface was far from the

ole of the kidney as shown in Fig. 10 (c). The reason is that in

odel adaptation process, there was a large renal medulla locu-

us and morphological operations can not fill this region. Similarly

n both TGS method and ITGS method, the detected outer sur-

ace did not still moved to the outer boundary of the kidney as

hown in Fig. 10 (g)–(l). The TGS methods tended to produce under-

egmentation as pointed by Li et al. (2012) . By contrast, in our

ethod these under-segmented regions were effectively extracted

s shown in Fig. 10 (n). These experimental results demonstrated

he robustness of our method against under-segmentation of the

idney. 

Segmentation evaluation is shown in Table 1 . As can be seen

n the 1st and 2nd columns of Table 1 , distances between the de-

ected outer surface and the reference kidney segmentation were

.41 ± 0.51 mm in ASSD and 1.04 ± 1.00 mm in ASRMSSD, which

ere slightly larger than the results reported by Li et al. (2012) .

n the paper of Li et al. (2012) , authors used only 17 CT im-

ges to test their method. In the 3rd column of Table 1 , vol-

me difference SRVD was negative and much smaller than zero

n the initialization step ( −16 . 09 ± 10 . 52 %), TGS method ( −10 . 09 ±
 . 55 %), random forest based method ( −11 . 17 ± 6 . 91 %) and ITGS

ethod ( −9 . 18 ± 8 . 10 %). This measure showed that these meth-

ds produce under-segmentation of the kidneys. Specially, perfor-

ance of the ITGS method was slightly improved compared to

hat of TGS (Paired t-tests in DSC, p = 6 . 97 × 10 −4 ). In the pa-

er of Chen et al. (2012a ), authors used a voxel labeling method,

n iterative shape-constrained graph cut, to segment the kidney.

he TPF and FPF for the kidney segmentation were 96.32 ± 6.12%

nd 0.29 ± 0.05%, respectively. The FPF was larger than the other

ethod. The TPF was smaller than the proposed NUGS method.

he DSC was 97.86 ± 2.41%, which showed the proposed NUGS

ethod outperformed ( Li et al., 2012 ). 
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Fig. 9. Kidney segmentation (the green curve is reference segmentation and the red curve is the detected kidney). (a) The original image in axial view; (b) The 3D vi- 

sualization of reference segmentation; (c) The initialized outer surface; (d) The 3D visualization of surface distance between the initialized outer surface and reference 

segmentation; (e) The outer surface by using the random forest based method ( Jin et al., 2016 ); (f) The 3D visualization of surface distance between the outer surface by 

using the random forest based method ( Jin et al., 2016 ) and reference segmentation; (g) The gradient magnitude image and the detected outer surface by using traditional 

graph search method; (h) The original image and the detected outer surface by using traditional graph search method; (i) The 3D visualization of surface distance between 

the outer surface by using traditional graph search method and reference segmentation; (j) The gradient magnitude image and the detected outer surface by using iterative 

traditional graph search method; (k) The original image and the detected outer surface by using traditional iterative graph search method; (l) The 3D visualization of surface 

distance between the outer surface by using traditional iterative graph search method and reference segmentation; (m) The multi-scale boundary image and the detected 

outer surface by using the proposed non-uniform graph search method; (n) The original image and the detected outer surface by using the proposed non-uniform graph 

search method; (o) The 3D visualization of surface distance between the outer surface by using the proposed non-uniform graph search method and reference segmentation. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Kidney segmentation (the green curve is reference segmentation and the red curve is the detected kidney). (a) The original image in coronal view; (b) The 3D 

visualization of reference segmentation; (c) The initialized outer surface; (d) The 3D visualization of surface distance between the initialized outer surface and reference 

segmentation; (e) The outer surface by using the random forest based method ( Jin et al., 2016 ); (f) The 3D visualization of surface distance between the outer surface by 

using the random forest based method ( Jin et al., 2016 ) and reference segmentation; (g) The gradient magnitude image and the detected outer surface by using traditional 

graph search method; (h) The original image and the detected outer surface by using traditional graph search method; (i) The 3D visualization of surface distance between 

the outer surface by using traditional graph search method and reference segmentation; (j) The gradient magnitude image and the detected outer surface by using traditional 

iterative graph search method; (k) The original image and the detected outer surface by using traditional iterative graph search method; (l) The 3D visualization of surface 

distance between the outer surface by using traditional iterative graph search method and reference segmentation; (m) The multi-scale boundary image and the detected 

outer surface by using the proposed non-uniform graph search method; (n) The original image and the detected outer surface by using the proposed non-uniform graph 

search method; (o) The 3D visualization of surface distance between the outer surface by using the proposed non-uniform graph search method and reference segmentation. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Quantitative results and comparative performance evaluation for kidney segmentation (mean standard deviation). The bold numbers 

identify the best results. 

Method ASSD[mm] ASRMSSD[mm] SRVD[%] VOE[%] TPF[%] FPF[%] DSC[%] 

Initialization 2.01 ± 1.35 2.99 ± 1.99 −16 . 09 ± 10 . 52 18.92 ± 8.87 82.32 ± 9.08 0.01 ± 0.03 89.26 ± 5.96 

TGS 1.43 ± 1.08 2.51 ± 1.72 −10 . 09 ± 8 . 55 13.66 ± 7.30 87.97 ± 7.39 0.01 ± 0.03 92.49 ± 4.60 

Jin et al. 1.28 ± 0.87 2.20 ± 1.50 −11 . 17 ± 6 . 91 13.27 ± 6.32 87.71 ± 6.55 0.01 ± 0.01 92.77 ± 3.81 

ITGS 1.35 ± 1.00 2.37 ± 1.67 −9 . 18 ± 8 . 10 13.16 ± 6.69 88.67 ± 6.82 0.01 ± 0.03 92.80 ± 4.16 

Chen et al. / / / / 96.32 ± 6.12 0.29 ± 0.05 

Li et al. 0.14 ± 0.09 0.66 ± 0.61 1.42 ± 2.44 2.43 ± 2.22 / / 96.55 ± 1.77 

NUGS 0.41 ± 0.51 1.04 ± 1.00 1.23 ± 5.29 4.09 ± 4.41 98.44 ± 2.84 0.02 ± 0.03 97.86 ± 2.41 
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5.3.2. Renal cortex segmentation 

The single scale Hessian based cost function ( σs = 1 . 0 , 3 . 0 ) was

used to detect the inner surface for IGS method. In our experi-

ments, the inner surface was detected by graph search methods

from the same initialized surfaces so as to compare the perfor-

mance of these methods. 

Fig. 11 compares one renal cortex segmentation case (the same

image as in Fig. 9 ) between initialization, the random forest based

method ( Jin et al., 2016 ), Hessian-based ( σs = 3 . 0 ) TGS, Hessian-

based ( σs = 1 . 0 ) TGS and our NUGS method. Fig. 11 (a) shows the

original image in axial view. Fig. 11 (b) shows the 3D visualization

of reference segmentation. The initialized renal cortex was under-

segmented as shown in Fig. 11 (c). However, the random forest

based method tended to produce over-segmentation as shown in

Fig. 11 (e) since thickness and intensity range of the renal column

was similar as those of the renal cortex. Surface distance between

the inner surface and reference annotation was mostly large as

shown in Fig. 11 (f). Fig. 11 (g) shows the Hessian-based image ( σs =
3 . 0 ) and the inner surface was detected by using traditional graph

search method. The inner surface stopped at the boundary of the

sheet structures computed according to a single scale second order

partial derivative (also Hessian matrix based); however, the bound-

ary was far from the true boundary between renal cortex and re-

nal medulla as shown in Fig. 11 (h). Due to the under-segmentation

of the kidney in this case, renal cortex was under-segmented as

shown in Fig. 11 (i). The inner surface was much closer for the

smaller scale ( σs = 1 . 0 ) as shown in Fig. 11 (j); however, renal cor-

tex was also under-segmented as shown in Fig. 11 (k)-(l). Fig. 11 (m)

shows the filtered image was used for the proposed non-uniform

graph search method to successfully detect the inner surface. 

Fig. 12 compares one renal cortex segmentation case (the same

image as Fig. 10 ) between initialization, the random forest based

method ( Jin et al., 2016 ), Hessian-based ( σs = 3 . 0 ) TGS, Hessian-

based ( σs = 1 . 0 ) TGS and our NUGS method. Fig. 12 (a) shows the

original image in coronal view. Fig. 12 (b) shows the 3D visualiza-

tion of reference segmentation. As can be seen in Fig. 12 (c)-(d), ini-

tial renal cortex was falsely detected at the pole of the kidney due

to the under-segmentation of the kidney. The random forest based

method tended to produce over-segmentation of renal cortex and

contain renal column and rib as shown in Fig. Fig. 12 (e)-(f). Sur-

face distance between the inner surface and reference annotation

was also mostly large as shown in Fig. 12 (f). The Hessian-based

methods for both σs = 3 . 0 and σs = 1 . 0 produced severe under-

segmentation of renal cortex as shown in Fig. 11 (g)–(l). As can be

seen in Fig. 12 (n)-(o), renal cortex was accurately segmented ex-

cept for a few structures. 

Segmentation evaluation for renal cortex is shown in Table 2 .

As can be depicted in the 1st and 2nd column of Table 2 , sur-

face distances between the detected renal cortex to the refer-

ence renal cortex segmentation were 0.12 ± 0.17 mm in ASSD and

0.61 ± 0.44 mm in ASRMSSD. The overall surface distance illus-

trated that the proposed NUGS outperformed the other methods.

SRVD was −13 . 01 ± 15 . 33 %. It means the inner and outer surfaces

t  
nitially produced under-segmentation using the proposed model

daptation method. SRVD was 15.68 ± 22.47% for the Hessian-

ased method ( σs = 3 . 0 ), and SRVD was 33.31 ± 15.52% for the ran-

om forest based method ( Jin et al., 2016 ). It means these two

ethods produced over-segmentation on the whole. Compared

o the Hessian-based method with a larger single scale second

rder partial derivative, renal cortex segmentation performance

as improved to the Hessian-based method with a smaller sin-

le scale second order partial derivative as can be seen in the

nd row and the 4th row of Table 2 (Paired t-tests in DSC, p =
 . 51 × 10 −11 ). The TPF and FPF for the renal cortex segmentation

y using iterative shape-constrained graph cut ( Chen et al., 2012a )

ere 90.15 ± 3.11% and 0.85 ± 0.05%, respectively. By contrast, the

PF and FPF for the renal cortex segmentation by using NUGS

ere 98.71 ± 3.47% and 0.01 ± 0.01%, respectively. The overall DSC

f NUGS was 97.48 ± 3.18%. p values were 1 . 32 × 10 −32 (NUGS vs

he Hessian-based method ( σs = 3 . 0 )), 1 . 80 × 10 −25 (NUGS vs the

essian-based method ( σs = 1 . 0 )), 1 . 31 × 10 −28 (NUGS vs the ran-

om forest based method) in paired t-tests. The total running time

f the proposed approach was approximately 5 minutes. 

. Conclusion and future work 

In this paper, we present a novel framework, named CorteX-

ert , that improves the performance of the renal cortex quantifica-

ion. The proposed method was tested on 58 clinical CT images. An

verall segmentation accuracy of 97.86% ± 2.41% and 97.48% ± 3.18%

or kidney and cortex segmentation, respectively. First, the statisti-

al shape model of the renal cortex is established so that we can

utomatically initialize the outer surface and the inner surface of

he renal cortex in a test image. Second, renal cortex initialization

an provide approximate inner and outer surfaces of the kidney

nd make it much easier to detect the weak boundary of the in-

er layer and remove the renal column. Third, we introduce a non-

niform graph search algorithm to detect the optimal boundary of

he renal cortex. Compared to the traditional multi-surface graph

earch method, a new cost function is formulated based on multi-

cale boundary detection and a non-uniform graph is constructed.

odes are non-equidistantly sampled according to the initial sur-

ace. Sample points are denser in the regional candidate bound-

ries while they are sparser further from candidate boundaries.

he presented graph search algorithm can improve accuracy for re-

al cortex segmentation since we can control sampling steps. 

Despite all significant improvements in renal cortex segmen-

ation, several limitations of the proposed segmentation method

xist. Renal cortex segmentation may still be imperfect in certain

ases where anatomical and pathology induced variations are not

aptured by the model. As can be seen in Fig. 13 , kidney anatomy

n this example is unexpectedly different: Fig. 13 (a)-(b) shows 180 °
otation with respect to the conventional positioning of the normal

idneys. Moreover, part of the renal cortex is missing. Renal veins

nd arteries are highly enhanced with contrast agent such that the

oundaries between the renal cortex and renal veins and/or ar-

eries are not clear, contributing to segmentation errors. One may
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Fig. 11. Renal cortex segmentation (the green curve is reference segmentation and the red curve is the detected surface). (a) The original image in axial view; (b) The 

3D visualization of reference segmentation; (c) The initialized renal cortex; (d) The 3D visualization of surface distance between the initialized renal cortex and reference 

segmentation; (e) The renal cortex by using the random forest based method ( Jin et al., 2016 ); (f) The 3D visualization of surface distance between the detected renal cortex 

by using the random forest based method ( Jin et al., 2016 ) and reference segmentation; (g) The Hessian-based image ( σs = 3 . 0 ) and the inner surface by using traditional 

graph search method; (h) The original image and the detected renal cortex by using traditional graph search method; (i) The 3D visualization of surface distance between 

the detected renal cortex by using traditional graph search method and reference segmentation; (j) The Hessian-based image ( σs = 1 . 0 ) and the detected inner surface by 

using traditional graph search method; (k) The original image and the detected renal cortex by using traditional graph search method; (l) The 3D visualization of surface 

distance between the renal cortex by using traditional graph search method and reference segmentation; (m) The filtered image and the detected inner surface by using 

the proposed non-uniform graph search method; (n) The original image and the detected renal cortex by using the proposed non-uniform graph search method; (o) The 3D 

visualization of surface distance between the renal cortex by using the proposed non-uniform graph search method and reference segmentation. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Renal cortex segmentation (the green curve is reference segmentation and the red curve is the detected surface). (a) The original image in coronal view; (b) The 

3D visualization of reference segmentation; (c) The initialized renal cortex; (d) The 3D visualization of surface distance between the initialized renal cortex and reference 

segmentation; (e) The renal cortex by using the random forest based method ( Jin et al., 2016 ); (f) The 3D visualization of surface distance between the detected renal cortex 

by using the random forest based method ( Jin et al., 2016 ) and reference segmentation; (g) The Hessian-based image ( σs = 3 . 0 ) and the inner surface by using traditional 

graph search method; (h) The original image and the detected renal cortex by using traditional graph search method; (i) The 3D visualization of surface distance between 

the detected renal cortex by using traditional graph search method and reference segmentation; (j) The Hessian-based image ( σs = 1 . 0 ) and the detected inner surface by 

using traditional graph search method; (k) The original image and the detected renal cortex by using traditional graph search method; (l) The 3D visualization of surface 

distance between the renal cortex by using traditional graph search method and reference segmentation; (m) The filtered image and the detected inner surface by using 

the proposed non-uniform graph search method; (n) The original image and the detected renal cortex by using the proposed non-uniform graph search method; (o) The 3D 

visualization of surface distance between the renal cortex by using the proposed non-uniform graph search method and reference segmentation. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Quantitative results and comparative performance evaluation for renal cortex segmentation (mean ± standard deviation). The bold 

numbers identify the best results. 

Method ASSD[mm] ASRMSSD[mm] SRVD[%] VOE[%] TPF[%] FPF[%] DSC[%] 

Initialization 1.45 ± 0.80 2.37 ± 1.37 −13 . 01 ± 15 . 33 49.78 ± 11.32 62.04 ± 12.34 0.06 ± 0.03 66.06 ± 10.66 

TGS( σs = 3 . 0 ) 1.43 ± 0.60 2.46 ± 1.31 15.68 ± 22.47 42.75 ± 7.87 78.32 ± 11.21 0.10 ± 0.06 72.48 ± 6.57 

Jin et al. 0.94 ± 0.31 1.83 ± 0.62 33.31 ± 15.52 31.20 ± 6.37 94.65 ± 4.85 0.09 ± 0.03 81.34 ± 4.63 

TGS( σs = 1 . 0 ) 0.86 ± 0.39 1.83 ± 0.82 0.31 ± 16.16 30.74 ± 7.72 81.82 ± 9.15 0.05 ± 0.03 81.59 ± 5.44 

Chen et al. / / / / 90.15 ± 3.11 0.85 ± 0.05 / 

Li et al. 0.18 ± 0.11 0.80 ± 0.64 2.37 ± 1.72 4.38 ± 3.93 / / 90.50 ± 1.19 

NUGS 0.12 ± 0.17 0.61 ± 0.44 2.52 ± 4.76 4.74 ± 5.61 98.71 ± 3.47 0.01 ± 0.01 97.48 ± 3.18 

Fig. 13. A difficult case with large morphological change (the green curve is reference segmentation and the red curve is the detected surface). (a) Original image in axial 

view; (b) 3D visualization of the reference segmentation; (c) Initialized renal cortex; (d) 3D visualization of surface distances between the initialized renal cortex and 

reference segmentation; (e) Renal cortex by obtained using the random forest based method ( Jin et al., 2016 ); (f) 3D visualization of surface distance between the renal 

cortex detected using the random forest based method ( Jin et al., 2016 ) and the reference segmentation; (g) Original image and the detected renal cortex obtained using 

traditional graph search method ( σs = 3 . 0 ); (h) 3D visualization of surface distance between the renal cortex detected using traditional graph search method and reference 

segmentation ( σs = 3 . 0 ); (i) Original image and the renal cortex detected using traditional graph search method ( σs = 1 . 0 ); (j) 3D visualization of surface distance between 

the detected renal cortex by using traditional graph search method and the reference segmentation ( σs = 1 . 0 ); (k) Original image and the renal cortex detected using the 

proposed non-uniform graph search method; (l) 3D visualization of surface distances between the renal cortex obtained using the proposed non-uniform graph search 

method and the reference segmentation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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hink that incorporating more parameters into the model may be

 solution to address some of these problems. However, it is not a

iable solution because including more parameter helping in such

are cases will unnecessarily increase the model complexity and

ause over-fitting. Hence, in the current effort, the proposed sys-

em has a manual interaction tool for handling inaccurately seg-

ented cases by allowing the users to correct the incorrect portion

f the boundaries. 

Recently, deep learning has attracted substantial attention of

any researchers in medical image analysis due to its power-
ul learning representation of features at the low, mid, and high-

evels. Although we are not aware of any particular deep learning

cheme developed for renal cortex segmentation, we strongly be-

ieve that a convolutional neural network (CNN) carefully trained

n a large number of image samples could reveal highly accu-

ate and efficient segmentation results. However, it is important

o note the current limitations of the deep learning methodolo-

ies in pixel-wise classification (i.e., segmentation) problems. The

ata augmentation and/or transfer learning are necessary to ob-

ain reliable training of the CNN ( Buty et al., 2016; Hussein et al.,
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2017 ). Fine tuning with transfer learning maybe an option to ad-

dress some of these difficulties pertaining to deep learning net-

works but fine-tuning, designing a suitable transfer learning, and

completely 3D implementation of all these are not straightforward.

Unlike well established computer vision tasks (i.e., ImageNET clas-

sification ( Deng et al., 2009 )), obtaining sufficiently large numbers

of radiology images is not easy. This is indeed the case in our spe-

cific task. 

Although we have presented a fair amount of data for evaluat-

ing our proposed method, it is highly desirable to further increase

the numbers of available images for at least he following reasons:

Creating a better model – this requirement is vital particularly if

deep learning methods are to be considered. Unfortunately, con-

trast enhanced CT images for kidney diseases are not available in

publicly available data sets. One major reason is that CT require

ionizing radiation. Subsequently, it is difficult to form large-enough

datasets of normal controls. Another reason is that the kidney dis-

ease prevalence in association with renal cortex is low. As a result,

imaging data availability is limited. 
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