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 

Abstract—An automated method is reported for segmenting 3D 

fluid and fluid-associated abnormalities in the retina, so-called 

Symptomatic Exudate-Associated Derangements (SEAD), from 

3D OCT retinal images of subjects suffering from exudative 

age-related macular degeneration. In the first stage of a two-stage 

approach, retinal layers are segmented, candidate SEAD regions 

identified, and the retinal OCT image is flattened using a 

candidate-SEAD aware approach. In the second stage, a 

probability constrained combined graph search – graph cut 

method refines the candidate SEADs by integrating the candidate 

volumes into the graph cut cost function as probability constraints. 

The proposed method was evaluated on 15 spectral domain OCT 

images from 15 subjects undergoing intravitreal anti-VEGF 

injection treatment. Leave-one-out evaluation resulted in a true 

positive volume fraction (TPVF), false positive volume fraction 

(FPVF) and relative volume difference ratio (RVDR) of 86.5%, 

1.7% and 12.8%, respectively. The new graph cut – graph search 

method significantly outperformed both the traditional graph cut 

and traditional graph search approaches (p<0.01, p<0.04) and has 

the potential to improve clinical management of patients with 

choroidal neovascularization due to exudative age-related macular 

degeneration. 

 
Index Terms—Age-related Macular Degeneration, 

Symptomatic Exudate-Associated Derangement (SEAD), Retinal 

Layer Segmentation, graph cut, graph search 
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I. INTRODUCTION 

GE -related macular degeneration (AMD) is the primary 

cause of blindness and vision loss among the adults (>50 

year-old) [ 1 ].Exudative AMD or neovascular AMD is an 

advanced form of AMD, due to the growth of abnormal blood 

vessels from the choroidal vasculature, leading to subretinal and 

intra-retinal leakage of vascular fluid. Recently, treatment of 

exudative AMD has become available in the form of anti- 

vascular endothelial growth factor agents (including 

Ranibizumab and bevacizumab) [2, 3, 4], through intravitreal 

injection, leading to a regression of the neovascularization and 

resulting resoroption of fluid. The frequency of the injections is 

primarily guided by the amount of intra-retinal fluid, which is 

clinically estimated subjectively from a limited number of 

spectral domain optical coherence tomography (SD-OCT) 

slices [5, 6, 7, 8]. The intra- and inter-observer variability is 

high potentially leading to substantial  inconsistency in 

treatment , and automted fluid segmentation has the potential to 

improve this[9, 10]. In the following text, we use the term 

symptomatic exudate-associated derangement (SEAD) for the 

main retinal manifestations of AMD, including intraretinal 

fluid, subretinal fluid, and pigment epithelial detachment (as 

shown in Fig. 1). The segmentation of SEADs is a challenging 

task due to their relatively low signal to noise ratio (SNR) in 

SD-OCT scans and considerable shape variability. 
 

      Prior to the work reported here, only semi-automated 

methods have been proposed, relying on manual initialization in 

2D OCT slices to roughly quantify the SEAD volume [11]. We 

have previously reported a method for the identification of 2D 

SEAD footprints [12]. This method [12] was initiated by a fully 

automated retinal layer segmentation [13, 14]. Twenty-three 

features were then extracted in each intra-retinal layer to 

characterize its texture and thickness across the imaged portion 

of the macula. Abnormalities caused by the presence of SEADs 

were detected by classifying the local differences between the 

properties of the normal retinas and the diseased AMD under 

analysis. The method was successful in identifying the SEAD 

footprint (2D region in the OCT-imaged retinal domain). 

However, full segmentation of the 3D SEAD volumes is more 

challenging and only a few approaches have been reported in 

the past with a limited level of success. An automatic 

segmentation tool was reported in [15] but it failed to segment 

up to 30% of the analyzed scans. We have previously reported 

an early two-step attempt to 3D SEAD segmentation [16]. In the 

first step, our optimal surface approach was employed to 

segment the intra-retinal layers [13, 14] followed by a  
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Fig. 1. Examples of SEADs. The red curve is a manual segmentation 

of the SEAD consisting by the intraretinal fluid and the green curve 

outlines a SEAD resulting from a pigment epithelial detachment.  
 

 [ 17 ]. However, initialization (foreground and background 

voxels) required manual interaction and was not automated. The 

method was also directly dependent on the result of layer 

segmentation which worked well in certain types of SEADs but 

may have resulted in mis-segmentation of layers in some 

pigment epithelial detachments and intra-retinal fluid cases, 

which reduced the resulting accuracy of this semi-automated 3D 

SEAD segmentation.  

In this paper, we report a fully 3D and fully automated 

graph-theoretic method for SEAD segmentation. As can be seen 

in Fig.1, the top and bottom surfaces provide natural constraints 

for the SEAD segmentation. As previously shown in our paper 

[18], a multi-object strategy may be useful for segmenting the 

SEADs. This is due to the identifiable constraints between 

objects that cause the search space to become substantially 

smaller thus yielding a more accurate object (SEAD) 

segmentation. As shown in [18], even when considering only 

one object of interest, including other objects as the contextual 

targets may be a good strategy. As hinted earlier, for segmenting 

SEADs, two layers (one above the potentially SEAD containing 

regions and another below) are identified as the related target 

objects that serve as constrains. Graph search (GS) methods 

were successfully applied to segment the retinal layers [28, 29]. 

For the segmentation of the region object, the GC methods [17, 

19, 20] have been used widely. In this paper, we aim to 

effectively combine the GS and GC methods for segmenting the 

SEADS and layers simultaneously. An automatic voxel 

classification-based initialization is utilized that is based on the 

layer-specific texture features following the success of our 

previous work [12, 19]. 

II. RELATED WORKS 

A. Conventional graph-cut algorithm 

      GC methods have been very popular in the studies of image 

segmentation in recent years [17, 20, 21, 22, 23, 24, 25, 26, 

27]. A conventional graph-cut framework [17, 20] was thought 

to be feasible to solve SEAD segmentation in 3D OCT [16]. By 

introducing both a regional term and a boundary term into the 

graph-cut energy function, the method computed a minimum 

cost s/t cut on an appropriately constructed graph [21, 22]. For 

multiple object-region segmentation, an interaction term can be 

introduced to the energy function as a hard geometric constraint 

[28]. The overall problem can also be solved by computing an 

s/t cut with a maximum-flow algorithm. The conventional 

graph-cut framework can be applied to objects with different 

topological shapes, but it cannot avoid segmentation leaks in 

lower-resolution images. 

B. Optimal surface approach – graph-search approach 

      Optimal surface approach (GS methods) [29, 30, 31, 32] is 

important for the analysis of multiple intra-retinal layers in 3D 

OCT images [13, 14]. For SEAD cases, most of the lesions – 

intra-retinal fluid, sub-retinal fluid and the pigment epithelial 

detachments are all associated with surrounding retinal layers. 

The optimal surface approach modeled the boundaries 

in-between layers as terrain-like surfaces and suggested 

representing the terrain-like surface as a related closed set. By 

finding an optimal closed set, the approach was able to segment 

the terrain-like surface. For the multiple-surface case, the 

approach constructed a corresponding sub-graph for each 

terrain-like surface [30]. Weighted inter-graph arcs were added, 

which enforced geometry constraints between sub-graphs. The 

multiple optimal surfaces could be solved simultaneously as a 

single s/t cut problem by using a maximum-flow algorithm. The 

method worked well in finding stable results of globally optimal 

terrain-like surfaces. However, it was limited by the prior shape 

requirement. The multiple-SEAD case, in a single OCT image, 

can be modeled as a problem with multiple regions interacting 

with multiple surfaces. A surface-region graph-based method 

was proposed to segment multiple regions and multiple surfaces 

simultaneously [ 33 ]. Like the optimal surface approach, 

surface-region method constructed a sub-graph for each target 

region and surface. However, shape priors describing the 

geometric relations among the regions and surfaces were 

needed.  

III. PROBABILITY-CONSTRAINED GRAPH-SEARCH-GRAPH-CUT 

A. Method Overview 

  The proposed method consists of two main steps: Initialization 

and segmentation (Fig. 2). In the initialization step, several 

pre-processing steps are first applied to the input OCT image 

which include: segmenting the layers, fitting a surface to the 

bottom (retinal pigment epithelium (RPE)) layer, determining 

SEAD footprints [12], ignoring points within the SEAD footprints, 

and flattening the scan images; a texture classification based 

method is employed producing the initialization results. After 

initialization, probability normalization refines the initialization 

results. In the segmentation phase, the GS-GC method 

synergistically integrates the results from the initialization as 

described in the following sub-sections.  
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(a)                                                         (b)                                                   (c) 

Fig. 4. Initialization post-processing: Probability normalization. (a) Intensity distribution of SEAD regions in the reference standard. (b) 

Intensity distribution in a specific initialization result. (c) Probability normalization resulting from the flip-duplicate step (see text). 

 

 

 

 

 
Fig. 2. Flowchart of the proposed system. 

B. Initialization  

      To initialize the graph based SEAD segmentation algorithm, 

an initial segmentation of the SEAD regions is needed. To find 

voxels that are likely inside of a SEAD region, a statistical voxel 

classification approach is applied directly to the pre-processed 

input image. The classifier assigns a likelihood to each voxel 

that it belongs to a SEAD. This likelihood map serves as 

constraints for the graph based segmentation algorithm.  

B.1 Pre-processing 

      First, the upper and lower surface of the retina is determined 

in the scan using the output of our 11-surface segmentation [14]. 

For these 11 surfaces, the top retinal surface corresponds to the 

inner limiting membrane and bottom layer corresponds to the 

RPE. For more details, see figure 2 in [12]. While the top retinal 

surface is usually segmented successfully even in OCT scans 

with SEADs, the bottom surface - surface 11 - can be 

problematic, especially with SEADs located under the retinal 

pigment epithelium (RPE, see Fig. 3). In these cases, the layer 

segmentation may follow the top of the SEAD instead of 

identifying the bottom of the retina.  

      As mentioned above, we have previously presented a 

method for detection of SEAD locations in the XY-plane [12].  

This method finds a 2D SEAD ―footprint‖ by analyzing the 

textural and thickness properties of individual layers in groups 

of A-scans. The likelihood that an A-scan belongs to a SEAD 

footprint is calculated from the number of standard deviations 

from the normal atlas value. The binary footprint is generated by 

thresholding the likelihood map and the binary footprint is used 

to enhance the bottom layer segmentation result so that it is 

approximately located at the position in the scan where the 

bottom of the retina would have been located had the SEAD not 

been present. This is accomplished by fitting a thin plate spline 

to a set of 1000 randomly sampled points from the bottom 

surface 11, located outside of the 2D SEAD footprint map. A 

representative example of the bottom surface before and after 

thin plate spline fitting is shown in Fig. 3. The retinal images are 

subsequently flattened according to the identified thin-plate 

spline surface. 

 
                  (a)                                 (b)                                (c)     

Fig. 3. Illustration of retinal layer correction. (a) One slice from the 

original OCT image. (b) Segmentation of all surfaces, with  surface 11 

at the bottom (cyan). (c) Surface 11 after thin-plate spline fitting. 
 

B.2 Voxel classification 

      To generate an initial segmentation of the fluid-filled SEAD 

areas we apply a supervised voxel classification approach 

trained on the voxels between the previously segmented top and 

bottom surface of the retina. To speed-up feature extraction and 

subsequent voxel classification, the training images are first 

sub-sampled by a factor of 2 in the X and Y directions and a 
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factor of 4 in depth, the Z direction yielding images sized 

100x100x256 voxels.  

1) Features 

      For each voxel, many of textural, structural and positional 

features are calculated (see Table 1). Structural features (1-15) 

describe the local image structure while textural features 

(16-45) describe local texture. The location (height) of the voxel 

in the retina is encoded in three location features (46-48), the L2 

distance in voxels from previously segmented surfaces 1, 7 and 

11. Finally, 4 features (49-52) are included that were 

determined in our previous work [12] as relevant to SEAD 

detection and description. 
Table 1. Used classification features. 

Feature Nr Feature Description 

1-5 First eigenvalues of the Hessian matrices at scales σ=1, 3, 6, 

9 and 14 

6-10 Second eigenvalues of the Hessian matrices at scales σ=1, 3, 

6, 9 and 14 

11-15 Third eigenvalues of the Hessian matrices at scales σ=1, 3, 6, 

9 and 14 

16-45 Output of a Gaussian filter bank up to and including second 

order derivatives at scales  σ=2, 4, 8 

46-48 Voxel distances from surfaces 1,7 and 11 

49-52 Layer texture features as described in [12]: mean intensity, 

co-occurrence matrix entropy and inertia, wavelet analysis 

standard deviation (level 1) 

 

2) Training Phase 

      In the training phase, the pre-processed training images are 

randomly sampled to collect voxels that are either inside or 

outside of the SEADs. Due to differences in the number of 

SEAD voxels in individual OCT images both the normal and the 

SEAD voxels in a scan are sampled separately to ensure that a 

sufficient number of positive training samples are obtained in 

each scan. For each training image, 50,000 negative samples 

and 10,000 positive samples (i.e., two classes) were randomly 

collected. If there were less than 10,000 positive voxels in any 

training image, all available positive voxels were included in the 

training set [34]. Two-class classification was used because the 

SEADs in our data are fluid filled, voxels inside the SEADs 

correspond to fluid while voxels outside of the SEADs do not. 

      A k-Nearest Neighbor classifier (k=21) was chosen based 

on its performance in comparative preliminary experiments on a 

small, independent set of images. The employed k-NN 

implementation [ 35 ] allows approximate Nearest Neighbor 

classification and the maximum error parameter epsilon was set 

to 2 for this algorithm. Training time for this classifier is low, 

not taking more than 20 seconds. The training phase only needs 

to be completed once, after this, the trained classifier can be 

used to classify unseen voxels [36]. 

 

3) Testing Phase 

      In the testing phase, the previously described trained 

classifier was applied to test images. After pre-processing and 

feature extraction, each voxel between the top and the bottom 

surfaces was assigned a likelihood between 0 and 1 that the 

voxel is inside of a SEAD region. 

B.3 Initialization Post-Processing by Probability Normalization 

      The above described initialization is not always successful 

(see 2
nd

 and 3
rd

 rows of Fig. 7). To cope with the high image 

noise in these cases, a post-processing method was proposed. 

The ground truth identified in the training data set revealed that 

the intensity distribution of the SEAD regions closely follows 

the Gaussian distribution in the low intensity range. This 

knowledge was used to post-process the initialization results as 

shown in Fig. 4: (1) Find the largest intensity value on the 

original curve. (2) Using this value, flip-duplicate the left part of 

the curve. (3) Set the probability of those intensity values 

outside the symmetric part to zero. After the post-processing, 

the resulting likelihood map is used to constraint the subsequent 

graph based segmentation.    

C. Graph Search-Graph Cut SEAD Segmentation 

      The GS and GC methods were synergistically combined to 

segment the SEADs. Two layers (one layer above the SEAD 

region and another below the SEAD region) are included as the 

auxiliary target objects to constraint the SEAD segmentation. 
  
C.1 Cost Function Design 

The segmentation problem can be formulated as an energy 

minimization problem such that for a set of pixels P and a set of 

labels L, the goal is to find a labeling f: P  L that minimizes 

the energy function En(f). Our cost function is designed as 

follows: 

)()()()( nsInteractioERegionsESurfacesEfEn   ,   (1) 

where E(Surfaces) represents the cost associated with the 

segmentation of all surfaces, E(Regions) represents the cost 

associated with the segmented regions, and E(Interactions) 

represents the cost of constraints between the surfaces and 

regions. More details are given below. 

 

(1) Surface cost function 

      For the terrain-like multiple-surface segmentation, the graph 

search method [29] is utilized. Similar to [29], the cost function 

is designed as 





Nqp

qp

Sv

v qSpShcSE
),(

, ))()(()(   ,            (2) 

where S is the desired surface, cv is an edge-based cost which is 

inversely related to the likelihood that S contains the voxel v. (p, 

q) is a pair of neighboring columns N. hp,q is a convex function 

penalizing the surface S shape change on p and q. 

(2) Region cost function 

      The graph cut method [17] has been successfully applied to 

regional segmentation. The typical graph cut energy function is 

defined as,  

    



pNqp

qpqp

p

pp ffBfRfE
,

, ),()()(
PP

         (3) 

where Np is the set of pixels in the neighborhood of p.  Rp(fp) is 

the cost of assigning label fp   L to p which is usually defined 

based on the image intensity and can be considered as a log 

likelihood of the image intensity for the target object, and Bp,q(fp, 

fq) is the cost of assigning labels fp, fq   L to p and q that could 

be based on the gradient of the image intensity.  
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      Importantly, the results of the initialization step are 

effectively integrated into the whole framework: 1) The high 

likelihood voxels (over  0.8, followed by morphologic erosion) 

were used as source seeds.  Voxels with low probability (here 0) 

were used as sink seeds. 2) The proposed 

probability-constrained energy function was defined as follows: 





pNqPp

qpqp

Pp

pppp ffBfCfDE
,

, ),())()((   , (4) 

where , ,    are the weights for the data term, probability 

constrained term, and boundary term, respectively, satisfying 

1     . These components are defined as follows: 

ln ( | ),
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                             (7)
 

where Ip is the intensity of pixel p, object label is the label of the 

object (foreground).
 

)|( OIP p  and )|( BIP p are the 

probabilities of intensity of pixel p belonging to object and 

background, respectively, which  are  estimated  from  object  

and  background intensity  histograms  during the separate 

training phase (details given below). d(p, q) is the Euclidian 

distance between pixels p and q, and  is the standard deviation 

of the intensity differences of neighboring  voxels along the 

boundary, 

))(exp(1)( pInitPfC pp    ,               (8) 

where InitP(p) is the probability of p which is the initialization 

result,  is a constant (here =1). 

      During the training stage, the intensity histogram of each 

object is estimated from the training images. Based on this, 

)|( OIP p  and )|( BIP p  can be computed. As for the 

parameters ,  and   in Eqn. (9), since 1     , we only 

estimate  and   by optimizing the accuracy as a function of  

and  and set  = 1--. We use the gradient descent method [37] 

for the optimization.  

 

(3) Interaction between the surfaces and regions 

      The E(Interactions) represents the interactions between the 

surfaces and regions. We included two surfaces: SI and SS to 

constrain the regions, as shown in Fig. 5. If the voxel in the 

region is located higher than surface SS, then a penalty is given. 

Similarly if the voxel in the region is located lower than surface 

SI, then a penalty is given. The proposed interaction term is 

designed as follows, 











dvzpS
pv

vv

dpSvz
pv

vv

IS

fwfwnsInteractioE

)()()()(

)(   ,           (9) 

where z(v) represents the z coordinate of voxel v, p is a column 

which contains v, SS(p) and SI(p) are the z values for the surfaces 

SS and SI on the column p, respectively, d is a pre-defined 

distance threshold (here, d=1), wv is a penalty weight for v and fv 

= 1 if v region R. 

 

 

 

 

 

 

 
                               (a)                                      (b) 

Fig.5. Illustration of surface-region interactions on a 2D example. (a) 

The two terrain-like surfaces: SS and SI, and the region R in green. (b) 

Incorporation of the constraints between the region and surfaces. If the 

voxel in the region is superior to surface SS, then a penalty is given (as 

illustrated in blue). And if the voxel in the region is inferior than 

surface SI, then a penalty is given (as illustrated in red).  

 

 C.2 Graph Construction 

 

      Three sub-graphs are constructed for superior surface SS, 

inferior surface SI and region R. These three sub-graphs are 

merged together to form as a single s-t graph G which can be 

solved by a min-cut/max-flow technique [17]. 

R 

Surface SS 

Surface SI 

(a)                                                               (b)                        (c)  

Fig.6. Illustration of graph construction on a 2D example. (a) Final constructed graph G which consists of three sub-graphs GSS, GR and GSI. (b) 

Geometric constraints between surfaces GSS and GR. (c) Geometric constraints between surfaces GR and GSI. 
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      For the surface SS, a sub-graph GSS(VSS, ASS) is constructed 

by following the method in [29]. Each node in VSS corresponds 

to exactly one voxel in the image. Two types of arcs are added to 

the graph: (1) The intra-column arcs with +∞ weight, which 

enforces the monotonicity of the target surface; and (2) the 

inter-column arcs incorporating the penalties hp,q between the 

neighboring columns p and q. Each node is assigned a weight wn 

such that the total weight of a closed set in the graph GSS equals 

to the edge-cost term of E(surface). Following the method in 

[38], each node is connected to either the source S with the 

weight –wn if wn < 0 or the sink T with the weight wn if wn > 0. 

      For the surface SI, the same graph construction method is 

applied creating another sub-graph GSI(VSI, ASI). 

      For the region term cost function, the third sub-graph GR(VR, 

AR) is constructed following the graph cut method in [17]. Here, 

each node in VR is also corresponding to exactly one voxel in 

the image. The two terminal nodes: source S and sink T are the 

same nodes already used in GSS and GSI. Each node has t-links to 

the source and sink, which encode the data term. Each pair of 

neighboring nodes is connected by an n-link, which encodes the 

boundary term.  Fig. 6 shows the graph construction.  The nodes 

in VR, VSS and VSI are all corresponding, so these three 

sub-graphs can be merged into a single graph G. 

      Additional inter-graph arcs are added between GSS and GR, 

as well as between GR and GSI to incorporate geometric 

interaction constraints. For GSS and GR, if a node (x, y, z) in the 

sub-graph GR is labeled as ―source‖ and the node (x, y, z+d) in 

the sub-graph GSS is labeled as ―sink‖, i.e. z-SSS(x,y) > d, then a 

directed arc with a penalty weight from each node GR(x, y, z) to 

GSS (x, y, z + d) will be added, as shown in Fig. 6(b). For GR and 

GSI, the same approach is employed. 

IV.  EXPERIMENTAL METHODS 

A. Subject Data and Independent Standard 

      Macula-centered 3D OCT volumes (200 x 200 x 1024 

voxels, 6 x 6 x 2 mm
3
, voxel size 30 x 30 x 1.95 µm

3
) were 

obtained from 15 eyes of 15 patients with exudative AMD. The 

study protocol was approved by the institutional review board 

of the University of Iowa. For the validation purpose, a 

leave-one-out strategy was employed during voxel 

classification and segmentation. 

      For the reference standard, a retinal specialist (MDA) 

manually segmented the intra- and sub-retinal fluid in each slice 

of each eye using Truthmarker software [39] on iPad.  

Fig. 7. Experimental results for four examples of SEAD initialization. The first column shows the original image, the 2nd column shows the 

initialization results, the 3rd column shows the final initialization results after probability normalization, and the last column shows the 

ground truth.  Note the improvements obtained by probability normalization in columns 3 and 4. 
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B. Assessment of Initialization and Segmentation 

Performance 

      The accuracy in terms of true positive volume fraction 

(TPVF), false positive volume fraction (FPVF) [35], and 

relative volume difference ratio (RVDR) were used as 

performance indices. TPVF indicates the fraction of the total 

amount of fluid in the reference standard delineation; FPVF 

denotes the amount of fluid falsely identified; RVDR measures 

the volume difference ratio comparing to the reference standard 

volume; which are defined as follows,  

TPVF = 

td

TP

C

C
                                 (10) 

FPVF = 

tdd

FP

CU

C


                           (11) 

RVDR = 

R

RM

V

VV 
                           (12)  

where, Ud is assumed to be a binary scene with all voxels in the 

scene domain set to have a value 1, and Ctd is the set of voxels in 

the true delineation, |·| denotes volume. |VM| is the segmented 

volume by method M, and |VR| is the volume of the reference 

standard.   More details can be seen in [40].  

      For the initialization, an experiment was performed to show 

the efficacy of the probability normalization by comparing the 

performance before and after probability normalization. 

      For the segmentation, three methods of the traditional GC in 

[17], the traditional GS method in [14] and the proposed 

probability constraints GS-GC were compared. A multivariate 

analysis of variance (MANOVA) test [41] was based on the 

three performance measures: TPVF, FPVF and RVDR to show 

the statistical significance of performance differences. 

Fig. 8. Experimental results for three examples of SEAD segmentation. The 1st, 2nd and 3rd columns correspond to the axial, sagittal and 

coronal views, respectively. Red color represents the upper retinal surface, green color represents the lower retinal surface, and yellow color 

depicts the surface of the segmented SEAD.   

 

Table 2: Mean ± standard deviation (median) of TPVF, FPVF and 

RVDR for initialization, initialization after probability 

normalization, traditional GC in [17], traditional GS [14] and the 

proposed probability constrained GS-GC. 

 TPVF (%)  FPVF (%)  RVDR %  

Initialization  72.3 ±17.6 

(77.5)  

4.5 ±3.7 

(3.6)  

21.1±41.2 

 (16.4)  

Initialization after 

probability 

normalization 

72.5 ±17.5 

(77.5)  

3.0 ±3.2 

(2.5)  

20.8±40.5 

 (16.2)  

Traditional GC [17] 77.9±23.9 

(81.4)  

3.6 ±3.3 

(3.2)  

20.2±37.6 

(6.5)  

Traditional GS [14]    82.8±10.5 

(86.0)  

3.2 ±4.5 

(2.6)  

22.8±45.6 

(12.5)  

The proposed 

probability constrained 

GS-GC  

86.5±9.5 

(90.2)  

1.7 ±2.3 

(0.5)  

12.8±32.1 

(4.5)  
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C. Statistical Correlation Analysis and Reproducibility 

Analysis 

For statistical correlation analysis, linear regression analysis 

[42] and Bland-Altman plots [43] were used to evaluate the 

relationship and agreement between the manual and automatic 

segmentations.  

For the reproducibility analysis, the retinal specialist was 

asked to manually segment the intra- and sub-retinal fluid at the 

onset of the project and again after more than 3 months. The 

manual segmenting of all the slices for one eye required more 

than 2 hours of expert tracing, so the re-tracing was performed 

on 5 randomly selected eyes from the entire data set. 

V. RESULTS 

A. Assessment of Initialization Performance 

      Fig. 7 shows four examples of initialization and its 

post-processing by probability normalization. We can see that 

for the 3
rd

 and 4
th

 images, reflective of probability normalization, 

the numbers of falsely detected voxels have decreased 

substantially. The 1
st
 and 2

nd
 rows of Table 2 show the 

initialization performance of TPVF, FPVF and RVD before and 

after probability normalization. We can see that after the 

probability normalization, the FPVF decreased noticeably 

(from 5.2% to 3.0%). 

B. Assessment of Segmentation Performance 

      Fig. 8 shows three examples of the obtained segmentation 

results. The quantitative assessment of the segmentation 

performance achieved by the proposed method expressed in 

TPVF, FPVF and RVDR is summarized in Table 2. Compared 

to the traditional GC [17] and GS [14], the proposed probability 

constrained GS-GC method achieved a better performance. . 

The p-value of the MANOVA test for the proposed method vs. 

the traditional GC [17] and the proposed method vs. the 

traditional GS [14] is p<0.01 and p<0.04, respectively, i.e., both 

of the performance improvements are statistically significant. 

The average TPVF, FPVF and RVDR for the proposed method 

are about 86.5%, 1.7% and 12.8%, respectively.  Fig. 9 shows a 

3D visualization of the typical SEAD segmentation results. 

      In terms of efficiency, the proposed method was tested on an 

HP Z400 workstation with 3.33GHz CPU, 24 GB of RAM. The 

computation times for the initialization and segmentation were 

15 and 10 minutes, respectively.  

C. Statistical Correlation Analysis and Reproducibility 

Analysis 

      Fig. 10 shows the linear regression analysis comparing 

SEAD volumes and Bland-Altman plots for the fully automated 

probability constrained GS-GC method vs. Manual 1. Fig. 11 

gives the reproducibility assesssment of manual tracing Manual 

1 vs. Manual 2. The figures demonstrate that: 1) the 

intra-observer reproducibility has the highest correlation with 

r=0.991. In comparison,  the automated analysis achieves a high 

correlation with the Manual 1 segmentation (r=0.945). 2) 

Analyzing the Bland-Altman plotsreveals that the 95% limits of 

agreement were [-0.34, 0.45] and [-0.24, 1.16] for the 

Automated method vs. Manual 1, and Manual 1 vs. Manual 2, 

respectively. The Automated vs. Manual 1 showed a much 

lower bias compared to the Manual 1 vs. Manual 2.   

VI. DISCUSSION  

      The results show that our new probability constrained graph 

cut – graph search method significantly outperforms both the  

Fig. 9. 3D visualization of SEAD segmentation on two examples (the 1st and 3rd cases in Fig. 8). Red color represents the upper retinal 

surface, green color the lower retinal surface, and orange color depicts the surface of the segmented SEAD.  
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(a) 

 
(b) 

Fig. 10. Statistical correlation analysis between the Automated 

method GS-GC and manual tracings Manual 1. (a) Linear regression 

analysis results comparing SEAD volumes. (b) Bland-Altman plots. 

 

 
(a) 

 
(b) 

Fig. 11. Statistical correlation analysis of reproducibility comparing 

manual tracings Manual 1 and Manual 2. (a) Linear regression analysis 

results comparing SEAD volumes. (b) Bland-Altman plots. 

traditional graph cut and traditional graph search approaches, 

and its performance to segment intra- and subretinal fluid in 

SD-OCT images of patients with exudative AMD is comparable 

to that of a clinician expert.   

A. Importance of SEAD segmentation 

      As mentioned in the Introduction, current treatment is 

entirely based on subjective evaluation of intra- and subretinal 

fluid amounts from SD-OCT by the treating clinician. Though 

never confirmed in studies, anecdotal evidence and experience 

in other fields show that the resulting intra- and interobserver 

variability will lead to considerable variation in treatment and 

therefore, under- and overtreatment. Though each treatment, 

based on regular and frequent intravitreal injections of 

anti-VEGF, has less than a 1:2000 risk of potentially 

devastating endophthalmitis and visual loss, because of the high 

number of lifetime treatments, the cumulative risk is still 

considerable. In addition, the cost of each injection is high, 

millions of patients are being treated every month, so that the 

total burden on health care systems is in billions of US$ (year 

2012). The potential of our approach to avoid overtreatment is 

therefore double attractive, because both lowering of the risk to 

patients and cost-savings can be achieved. However, validation 

in larger studies are required before our approach can be 

translated to the clinic. 

B. Advantages of the reported method 

      We have reported a graph-theoretic based method for SEAD 

segmentation. The multi-object strategy was employed for 

segmenting the SEADs, during which two retinal surfaces (one 

above the SEAD region and another below the SEAD region) 

were included as auxiliary target objects for helping the SEAD 

segmentation. The two auxiliary surfaces provide natural 

constraints for the SEAD segmentation and make the search 

space become substantially smaller, thus yielding a more 

accurate segmentation result. The similar idea has also been 

proved in [18]. The proposed graph-theoretic based method 

effectively combined the GS and GC methods for segmenting 

the SEADs and layers simultaneously. An automatic voxel 

classification-based method was used for initialization which 

was based on the layer-specific texture features following the 

success of our previous work [12, 19]. The probability 

constraints from the initialization were effectively integrated 

into the later GS-GC method which further improved the 

segmentation accuracy. 

 

      The contributions of the presented work can be summarized 

as follows:  

 To the best of our knowledge, this is the first approach for 

fully automated 3D SEAD segmentation.  

 The improved flattening method can deal with sub RPE 

structures based on spline fitting over the structure 

footprint.  

 Texture-based voxel classification is used for automated 

initialization, additionally providing probability constraints 

inherently integrated in the later graph based segmentation 

method. 

 Our probability-constrained GS-GC method integrates the 

initialization results in two ways: The initialization a) 

SEAD Volume (mm^3) 
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defines the source and sink seeds for the graph search; and 

2) modifies the cost function via local probability 

constraints. 

C. Limitations of the reported method 

      Our approach has some limitations. The first limitation is 

that it largely relies on the initialization results. If the probability 

constraints from the initialization step are incorrect, the final 

segmentation results may fail. Fig. 12 shows one example that 

mis-detects the SEAD due to the inaccurate initialization.  

      The proposed method shows high correlation with manual 

segmentation and if validated in a larger study, may be 

applicable to clinical use. From Figs. 10 and 11, it can be seen 

that the Automated vs. Manual 1 showed a much lower bias 

compared to the Manual 1 vs. Manual 2, which may be caused 

by the Manual 2 analysis being available for a subset of only 5 

OCT images – because of the laboriousness of expert tracing, 

even when accelerated with Truthmarker. We plan to expand 

our labelling efforts in the future. 

  
                  (a)                                                (b) 

  
                  (c)                                                (d) 
Fig. 12. One example of erroneous segmentation of a SEAD due to 

inaccurate initialization. (a) Original OCT slice. (b) Ground truth. (c) 

Initialization. (d) SEAD segmentation result. Arrow points to the 

mis-initialized and therefore mis-segmented SEAD. 

D.  Segmentation of abnormal retinal layers 

      Several methods were proposed for the retinal surface and 

layer segmentation [13, 14, 28, 44, 45, 46]. However, all these 

methods have been evaluated on datasets from non-AMD 

subjects, where the retinal layers and other structures are intact. 

When the retinal layers are disrupted, and additional structures 

are present that transgress layer boundaries, as in exudative 

AMD or Diabetic Macular Edema, segmentation becomes 

exponentially more challenging. This paper has provided an 

idea for the abnormal layer segmentation. The main task, the 

SEAD segmentation, has been tackled by our innovative 

approach of combining two auxiliary surfaces. In this process, 

the normal (surface) provides constraints for the abnormal 

(SEAD) segmentation, and as a return, the abnormal help refine 

the segmentation of normal.  As shown by our results (see Fig. 

8), whenever a successful SEAD segmentation is achieved, the 

bottom surface is also correctly segmented. This idea may also 

be applied to segment other targets in abnormal data set, such as 

liver tumor segmentation in liver CT scans.   

VII. CONCLUSION 

      In summary, a fully automated framework for 3D SEAD 

segmentation was reported. The proposed framework 

effectively combined the GS and GC methods, and employed a 

multi-object strategy during which two retinal layers were 

included as auxiliary target objects for helping the SEAD 

segmentation. An automatic voxel classification based on the 

texture features was used for initialization. Probability 

constraints further improved the graph-based segmentation. The 

method was tested on SD-OCT data from 15 eyes of 15 patients 

with AMD. The experimental results yielded an overall 

segmentation accuracy of TPVF > 86.5%, FPVF < 1.7%, and 

RVDR < 12.8%.  
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