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    Abstract—Automated retinal layer segmentation of optical 
coherence tomography (OCT) images has been successful for 
normal eyes but becomes challenging for eyes with retinal diseases 
if the retinal morphology experiences critical changes. We pro-
pose a method to automatically segment the retinal layers in 3-D 
OCT data with serous retinal pigment epithelial detachments 
(PED), which is a prominent feature of many chorioretinal disease 
processes. The proposed framework consists of the following steps: 
fast denoising and B-scan alignment, multi-resolution graph 
search based surface detection, PED region detection and surface 
correction above the PED region. The proposed technique was 
evaluated on a dataset with OCT images from 20 subjects diag-
nosed with PED. The experimental results showed that: (1) the 
overall mean unsigned border positioning error for layer seg-
mentation is 7.87±3.36 μm, and is comparable to the mean in-
ter-observer variability (7.81±2.56 μm).  (2) the true positive vo-
lume fraction (TPVF), false positive volume fraction (FPVF) and 
positive predicative value (PPV) for PED volume segmentation 
are 87.1%, 0.37% and 81.2%, respectively; (3) the average run-
ning time is 220s for OCT data of 512×64×480 voxels.  
  
 
 

Index Terms—Retinal layer segmentation, pigment epithelium 
detachment (PED), optical coherence tomography (OCT) 

 

 
Manuscript received July 18, 2014; revised September 10, 2014; accepted 

September 15, 2014.This work was supported in part by the National Basic 
Research Program of China (973 Program) under Grant 2014CB748600, and in 
part by the National Natural Science Foundation of China (NSFC) under Grant 
81371629, 6140293, 61401294, 81401451 and 81401472. Asterisk indicates 
corresponding author. 

F. Shi, *X. Chen, H. Zhao, W. Zhu, D. Xiang and E. Gao are with the School 
of  Electronics and Information Engineering, Soochow University, Suzhou, 
China (email: shifei, xjchen, hmzhao, wfzhu, xiangdehui@suda.edu.cn, 
gaoenting@foxmail.com). 

M. Sonka is with the Department of Electrical and Computer Engineering, 
the Department of Radiation Oncology, and the Department of Ophthalmology 
and Visual Sciences, The University of Iowa, Iowa City, IA 52242 USA (e-mail: 
milan-sonka@uiowa.edu). 

H. Chen is with Joint Shantou International Eye Center, Shantou University 
and the Chinese University of Hong Kong, Shantou, China 
(email:drchenhaoyu@gmail.com). 

Copyright (c) 2010 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained 
from the IEEE by sending a request to pubs-permissions@ieee.org. 

I.   INTRODUCTION 
PTICAL coherence tomography (OCT), a noninvasive, 
non-contact scan of the retina that shows its 

cross-sectional profile, has been used clinically for assessment 
of a variety of ocular diseases, such as glaucoma, diabetic 
macular edema (DME), and age-related macular degeneration 
(AMD). Recently introduced spectral domain (SD) OCT pro-
duces high-resolution real 3-D volumetric scan of the retina, 
and most of the anatomical layers of the retina can be visualized. 
Many methods have been proposed for automated retinal layer 
segmentation of SD-OCT images of normal eyes, and have 
obtained satisfactory results [1-15]. Fig. 1 shows a macular 
centered OCT B-scan (axial view) of a normal eye and the 11 
surfaces that define 10 retinal layers, segmented using the Iowa 
Reference Algorithm [14]. The surfaces are numbered 1 to 11 
from top to bottom. The retinal layers thus defined are nerve 
fiber layer (NFL), ganglion cell layer (GCL), inner plexiform 
layer (IPL), inner nuclear layer (INL), outer plexiform layer 
(OPL), outer nuclear layer & inner segment layer (ONL + ISL), 
connecting cilia (CL), outer segment layer (OSL), Verhoeff’s 
membrane (VM), and retinal pigment epithelium (RPE). 

Layer segmentation methods designed for normal retinas 
have also been successfully applied to retinas with certain types 
of diseases, such as glaucoma [11,12,16] and multiple sclerosis 
[13], or other diseases at an early stage, when no dramatic 
change in the layer structure happens. However, they usually 
experience difficulty when additional structures exist, such as 
intraretinal cysts, subretinal or sub-RPE fluid in DME and wet 
AMD.  In these cases, layer segmentation becomes challenging 
due to the following two reasons. First, the morphological 
features of each layer may vary greatly, and some constraints 
such as layer smoothness and thickness may not apply as in the 
normal case. Secondly, the degradation of image quality caused 
by abnormalities may affect the segmentation performance. 
Therefore, new methods that can segment retinas with abnor-
malities are needed for quantitative analysis of these diseases. 
The significance of layer segmentation in pathological study 
and clinical practice lies in the following two aspects. First, 
with the segmentation information, the morphological and 
optical features of each individual layer and their difference 
from normal ones can be analyzed, which can improve the 
understanding of the disease progression  and also can facilitate 
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Fig. 1. OCT image of a normal eye and the 11 surfaces defining 10 retinal layers.  
(a) B-scan image of OCT volume, obtained using Topcon 3D-OCT 1000. (b) 
The 11 surfaces overlaid on the OCT image. 
 
diagnosis. Secondly, layer segmentation can localize the ab-
normal regions and serve as a pre-processing step for auto-
mated detection and analysis of the abnormalities [17-23].  

In this paper, we focus on segmentation for retinas with 
serous pigment epithelium detachments (PED’s), which is 
associated with sub-RPE fluid and RPE deformation. We report 
a fully automated, unsupervised 3-D layer segmentation me-
thod for macular-centered OCT images with serous PED’s. In 
this work, layer segmentation and abnormal region segmenta-
tion are effectively integrated, where the position of layers and 
regions serve as constraints for each other. 

PED is a prominent feature of many chorioretinal disease 
processes, including AMD, polypoidal choroidal vasculopathy, 
central serous chorioretinopathy, and uveitis [24, 25]. PED’s 
can be classified as serous, fibrovascular, or drusenoid. Study 
shows that patients diagnosed with serous PED associated with 
AMD frequently have co-existing choroidal neovascularization 
(CNV), or have a higher risk of developing CNV, which can 
eventually cause severe visual acuity loss [25, 26].  PED is 
routinely diagnosed by 2-D imaging techniques such as fluo-
rescein angiography (FA) and indocyanine green angiography 
(ICGV). More recently, SD-OCT offers a means to show the 
cross-sectional morphologic characteristics of PED and to 
provide more detailed anatomic assessment. In OCT images, 
the RPE appears as a bright layer, and serous PED appears as a 
localized, relatively pronounced dome-shaped elevation of the 
RPE layer, as shown in Fig.2.  
 There were several reported methods related to segmentation 
of OCT images with PED’s or other abnormalities. Penha  et al. 

 
 

Fig. 2. An OCT B-scan showing PED. The red arrow indicates the elevated 
RPE and the yellow arrow indicates the detached region. 

 
[17] utilized the software on the commercially available Cirrus 
SD-OCT to detect the RPE and a method proposed by Gregori 
et al. [18] to create a virtual RPE floor free of any deformations. 
The combination of these algorithms permitted the detection of 
PED’s. The same algorithm was also used to study drusen 
associated with AMD [18]. Ding et al. [19] detected the top and 
bottom surfaces of the retina as constraints for subretinal and 
sub-RPE fluid detection. Chen et al. [20] segmented the flu-
id-associated abnormalities associated with AMD using a 
combined graph-search -graph-cut (GS-GC) method. The ab-
normal region was detected together with two auxiliary sur-
faces. Dufour et al. [21] detected six surfaces using 
graph-search based method with soft constraints [7] in OCT 
images with drusen. Quellec et al. [22] segmented eleven sur-
faces in OCT images with fluid-associated abnormalities. 
However, all these works focused on region segmentation only. 
In [17-20], only two or three surfaces were detected and served 
as constraints for the region segmentation purpose. In [21, 22], 
more surfaces were detected and their position information was 
utilized to indicate or detect retinal abnormalities. For all works 
reported in [17-22], no evaluation of layer segmentation accu-
racy was given.  

In comparison with the existing methods, the proposed me-
thod achieves the following goals: 
 The retinal OCT image with PED’s is segmented into all 

discernible layers. 
 Both layer segmentation and abnormal region segmentation 

are performed and high accuracy is achieved. 
 The method is designed for retinas with serous PED’s, but it 

also maintains good performance for normal retinas.   

II.   METHOD 

A.    Method Overview 
The proposed method consists of pre-processing, layer 

segmentation and region segmentation (Fig.3). In 
pre-processing, the OCT scans are first denoised using fast 
bilateral filtering. Then the B-scans are aligned to correct dis-
tortion caused by the eye movement. During layer segmenta-
tion, a multi-resolution graph-search method [3, 16] is utilized. 
Surfaces 1-6 are first detected. Then the elevated RPE floor 
(surface 11) and the estimated normal RPE floor (defined as 
surface 12) are detected using the same cost function but dif-
ferent smoothness constraints. The positions of surfaces 11 and 
12 are used in region segmentation, where their z-axis dis-
tance-based difference is used to form a PED footprint map. 
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Fig. 3. Flowchart of the proposed algorithm 
 
The 3-D PED region is also obtained.  Finally, surfaces 7 and 
below are detected on a flattened OCT image and are corrected 
using the PED footprints. 

The contribution of this work includes the following:  
 A simple and effective alignment method is proposed that 

improves the performance of the 3-D graph search method 
while maintaining the natural curvature of retinal layers.  

 The normal RPE floor, which does not exist under the PED 
region, is estimated using 3-D graph search method with 
simple constraints. 

 Layers that are most dramatically affected by PED’s are 
detected on the flattened image, where their position errors 
caused by intensity discontinuity can be corrected using 
geometric constraints. 

B.    Multi-resolution graph search 
The 3-D graph search algorithm for optimal surface seg-

mentation proposed by Li et al. [27] and its variations were 
successfully applied to retinal layer segmentation [1-3, 6, 7]. 
Boundaries between retinal layers can be modeled as ter-
rain-like surfaces. Finding the optimal surface is transformed 
into computing a minimum weight closed set in a 
node-weighed digraph, which can be solved in polynomial time 
by computing a minimum s-t cut in a derived arc-weighted 
digraph [28-30].   

Graph search for single surface detection is used in the 
proposed method. The volumetric image is defined as a 3-D 
matrix ),,( zyxI  with size ZYX ×× , and the surface is de-
fined by a function ),( yxS , where }1,,0{ −∈ Xx  ,  

}1,,0{ −∈ Yy  , and }1,,0{),( −∈ ZyxS  . Two parameters, 
Δx  and Δy  , control the smoothness of feasible surfaces. More 
precisely, Δx  defines the maximum of ),(),1( yxSyxS −+

 
Fig. 4. Illustration of graph construction for single surface detection. 
 
and Δy  defines the maximum of ),()1,( yxSyxS −+ . A cost 
function ),,( zyxc  inversely related to the likelihood that the 
voxel belongs to the detected surface is assigned to each voxel, 
so that the optimal surface is the one with the minimum cost. A 
node-weighed directed graph ),( EVG is constructed from the 
volumetric image.  Each node in V corresponds to one and 
only one voxel in ),,( zyxI . The weight of each node is com-
puted as  

  ,
)1,,(),,(

0),,(
),,(





−−
=

=
otherwisezyxczyxc

zifzyxc
zyxw   (1)                                                              

so that searching for the optimal surface is transformed to 
seeking a minimum weight closed set. The arc set E consists of 
intra-column arcs and inter-column arcs. The intra-column arcs 
connect each node with its immediate neighbor below, and the 
inter-column arcs are constructed according to the smoothness 
constraints, as shown in Fig. 4. This graph is further trans-
formed to an arc-weighted digraph where the optimal closed set 
is found by computing a minimum s-t cut. Refer to [27] for 
more details. 

Two types of cost functions are used in the proposed method. 
For most layers, the basic edge-based cost function is used. By 
definition, surfaces 1, 3, 5, 7, 9 and 10 have the dark-to-bright 
transition from top to bottom of the OCT scan, while surfaces 2, 
4, 6, 8 and 11 have the bright-to-dark transition. The Sobel 
operator is used to calculate the gradient magnitude in 
z-direction that forms the basic cost function. In the experi-
ments, because the test data has low resolution in y-direction, 
the Sobel operator is calculated in 2-D for each B-scan (x-z 
plane). An additional region-based cost is calculated and added 
to the basic edge-based cost for detection of surface 1, to ensure 
that surface 1 is favored than surface 7, which also has a 
high-contrast dark-to-bright transition. This cost is a summa-
tion of voxel intensities in a limited region above each voxel [1]. 
Since the region above surface 1 is darker than that above sur-
face 7, the voxels on surface 1 can have lower costs than those 
on surface 7.  

Two facts are considered in determining the smoothness 
constraints Δx  and Δy  for each surface: the image resolution 
and the shape of surfaces.  If the resolution is high, small values 
are used to ensure the smoothness of the surfaces. However, 
when the resolution is low, for certain surfaces, big difference 
of surface positions may exist between adjacent slices. For 
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example, surface 1 around the fovea and surface 11 above the 
PED region may have these quick changes. Therefore, for 
detection of these surfaces, large values of constraints are 
needed to ensure feasible surfaces exist. However, with large 
smoothness constraints, the detected surface position is more 
easily affected by noise or other artifacts in the OCT scan.  

The multi-resolution graph search method [3] is used in our 
algorithm to improve the efficiency of surface detection. The 
3-D OCT scan is downsampled by a factor of 2 twice in 
z-direction to form three resolution levels. Level 1 represents 
the lowest resolution and level 3 represents the highest resolu-
tion, i.e., the original data. The search for the surface in higher 
resolution is constrained in a subimage near the position of the 
surface detected in the next lower resolution. This subimage is 
rearranged into a rectangle so that the initial surface position 
lies in the center line. However, some surfaces with weak con-
trast may not be detectable in low resolution levels. In the 
proposed method, surfaces 1, 7, 11 and 12 are first detected in 
level 1, surfaces 2, 4 and 6 are first detected in level 2 and the 
remaining surfaces are detected only in level 3. 

C.    Pre-processing 
1)    Denoising by bilateral filtering 

Speckle noise is the dominant quality degrading factor in 
OCT scans, which may affect the effectiveness and efficiency 
of the following image processing and analysis algorithms. 
Denoising methods that can effectively remove the speckles 
while maintaining edge-like features in the image are particu-
larly important for segmentation tasks. Bilateral filtering [31] 
fulfills this requirement, which is essentially a weighted aver-
age filter, with weights that decrease with both the distance in 
the image plane (the spatial domain S) and the distance along 
the intensity axis (the range domain R). The result of bilateral 
filtering is given by 

𝐼𝐼pbf = 1
Wp

bf ∑ Gσs (‖p − q‖)q∈S Gσr �Ip − Iq�Iq             (2a)                      

with      Wp
bf = ∑ Gσs (‖p − q‖)q∈S Gσr �Ip − Iq� ,                    (2b)                                              

where p is the pixel being processed, q is the neighboring pixel,  
Ip  and Iq  are their original intensities and 𝐼𝐼pbf  is the filtering 
result. Gσs  and Gσr  are two Gaussian functions with standard 
deviations σs  and σr , called the space and range parameters, 
respectively. The brute-force implementation of bilateral fil-
tering is computationally expensive. Here we apply a fast ap-
proximation technique reported in [32]. In this scheme the 
bilateral filter is formulated in a higher dimension space as a 
convolution followed by simple nonlinear operations, and the 
computation can be downsampled without significantly im-
pacting the result accuracy. The filtering is applied to each 
B-scan of the OCT data. The parameters are selected empiri-
cally as σs = 20 and σr = 0.05 for intensities linearly norma-
lized to [0, 1]. The average processing time for each B-scan is 
0.05±0.0022s. The denoising result for one B-scan is shown in 
Fig. 5. The noise is suppressed while the edges between layers 
are preserved well.  
2)    Alignment of B-scans 
 As OCT is an in-vivo imaging technique, eye movement is 
inevitable and causes distortion in the volumetric OCT data. 
This distortion is most notable as misalignment of the B-scans, 
causing the position of layers to vary greatly in consecutive

               
(a) 

 
(b) 

Fig. 5. Result of denoising using bilateral filtering. (a) Original B-scan  
(b) Denoised B-scan 
 
B-scans and leading to difficulties for 3-D segmentation.  The 
misalignment can be viewed in the y-z image, as in Fig. 6 (a), 
where each column corresponds to a B-scan. Image flattening is 
often employed to correct the eye movement artifacts [2, 3, 6]. 
However, in images with PED’s, flattening may ruin the natural 
curvature of the edges that will be used as constraints in the 
subsequent segmentation, e.g., the dome like shape of the ele-
vated RPE and the smooth surface that forms the bottom of the 
retina.   We propose a fast method that approximately aligns the 
B-scans. After alignment, the smoothness of the surfaces to be 
detected is improved, so that they can be found by graph search 
with smaller smoothness constraints, and therefore are less 
affected by image noise, as explained in Section II.A.  

The B-scan alignment works as follows. Surface 1 is first 
detected using the multi-resolution surface detection method, 
and used as a reference surface, because its edge is the most 
prominent among all surfaces and can be detected quite accu-
rately even in the misaligned data.  The average z position of 
the peripheral surface 1 in each B-scan is calculated to estimate 
the displacement of each B-scan.  Specifically, both the left 
most and the right most 20% points of surface 1 are used in this 
calculation. Since normal fovea is naturally concave, the center 
part of surface 1 is excluded from the above calculation.  Each 
B-scan is thus shifted up or down so that the average z positions 
of peripheral surface 1 become the same for all B-scans.  

The alignment results in a smoothed appearance of all the 
layers in the y-z image, as shown in Fig. 6(b). The 3-D ren-
derings of surface 1 before and after alignment are shown in Fig. 
7. After alignment, the shape of surface 1 is much closer to that 
in the real eye. 

D.    Detection of surfaces 1-6  
 The multi-resolution graph search is then applied to the 
aligned data.  Surfaces 1 to 6 which are not severely affected by 
PED’s, are first detected. To achieve higher accuracy, surface 1 
is detected again using the same method as in Section II.A. For  
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(a) 

 
(b) 

Fig. 6. The y-z image before (a) and after (b) B-scan alignment with surface 1 
overlaid. 

 

 
(a) 

 
(b) 

Fig. 7. Surface 1 before (a) and after (b) B-scan alignment. The red curves 
correspond to surface 1 in the y-z slices as shown in Fig. 6(a) and (b), respec-
tively. 
 
normal eyes surface 7 is detected to constrain surfaces 2-6 [3]. 
However, for images with PED, the CL, OSL and VM are often 
invisible above the detachment region, and thus cause discon-
tinuities in surfaces 7 to 9. Nevertheless, a surface combined by 
7 and 10, defined as surface 7’ (see Fig. 8) can be detected, 
where surface 10 replaces surface 7 where it is not present. The 
search for this surface is constrained in the subvolume below 
surface 1. Similarly, surfaces 2 to 6 are detected with pre-
viously detected surface positions serving as constraints. See 
Table I for the order of detection, the position and smoothness 
constraints for each surface.  Large smoothness constraints are  

 
 

Fig. 8. Surface 7’ combining surfaces 7 and 10. 
 

TABLE I  
DETAILED CONSTRAINTS AND PARAMETER SELECTION IN SURFACE DETECTION. 

NOTE THAT ΔX = 1 FOR ALL SURFACES AND ALL LEVELS. 
Order in  
detection 

Surface 
# 

Surface 
above 

Surface 
below 

Initial  
Detection 

level 

Δy  in  
Initial  
level 

1 1 N/A N/A 1 6 
2  7’ 1 N/A 1 6 
3 2 1 7 2 3 
4 4 2 7 2 3 
5 6 4 7 2 3 
6 3 2 4 3 6 
7 5 4 6 3 6 
8 11  7’ N/A 1 6 
9 12  7’ N/A 1 1 

10 10 7 11 3 1 
11 8 7 10 3 1 
12 9 8 10 3 1 

 
set in y direction for surfaces 1 and 7’ at resolution level 1 to 
allow quick changes of surface positions in adjacent B-scans 
caused by the fovea or the PED. To further remove the influ-
ence of noise, each surface is smoothed in the x direction using 
a moving average filter. 

E.    Detection of the abnormal region 
 To correct the discontinuities in surfaces 7-9 caused by PED, 
the location of PED needs to be estimated. This is done by 
detecting the elevated RPE floor (surface 11) and the normal 
RPE floor (surface 12), and then finding their differences. Size 
and mean intensity values are also considered to remove false 
positives. 
1)  Detection of the elevated RPE floor and the estimated   

normal RPE floor 
 Surfaces 11 and 12 are detected in the subvolume below 
surface 7’. The real RPE floor changes abruptly and becomes 
dome-shaped in the PED region while its original pre-disease 
position used to form a smooth surface. Therefore, with the 
same bright-to-dark edge-related cost function, surface 11 can 
be detected by employing a large smoothness constraint and 
surface 12 can be detected by employing a small smoothness 
constraint. Even if no edge appears under the PED dome shape, 
this parameter constrains surface 12 to follow the smooth bot-
tom of the retina.  However, due to the loose constraint, surface 
11 may not follow the bottom of the retina properly in areas 
outside PED’s, but may be distracted by the choroid. Therefore 
we correct surface 11 by replacing it with surface 12 wherever 
it goes below surface 12. See Fig. 9 for the detected surfaces 11 
and 12.  
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Fig. 9. Detected surfaces 11 and 12. 
 

2)    PED footprints and volume detection 
 The PED footprints are generated in the x-y plane indicating 
which A-scans are associated with PED’s. First, a rough set of 
(x,y) coordinates are obtained where surface 11 is more than d1 
pixels higher than surface 12. Then these points are grouped 
into connected components, and regions with area less than a 
threshold A are excluded as false positives. In the next step, to 
make the boundaries more accurate, these footprints are ex-
tended via hysteresis thresholding to include connected points 
where surface 11 is more than d2 (d2 < d1) pixels higher than 
surface 12. Subsequently the 3-D PED volumes are detected as 
the set of voxels between surfaces 11 and 12 within each foot-
print. Finally, the mean intensity of each PED volume is used to 
reject false positives, owing to the fact that serous PED’s 
usually appear as dark regions in OCT. PED volumes with 
normalized mean intensity less than a threshold T are discarded 
as false positive. Examples of the initial PED footprint detec-
tion result and final footprint after edge refinement and rejec-
tion of false positives are shown in Fig. 10(a) and (b), respec-
tively. The details of parameter selection is described in Section 
IV.A. 

F.    Detection of surfaces 7-10 
 In OCT scans for normal eyes, surfaces 7-10 are relatively 
flat surfaces with reasonably uniform distances between adja-
cent ones. If the fluid-filled volume of PED is removed, these 
geometric constraints can be approximately restored. This is 
achieved by flattening of the OCT volume using surface 11 
detected in Section II.E as the reference surface.  Thus the 
invisible portions of surfaces 7-9 can be estimated in the flat-
tened image.   
 Flattening refers to shifting the A-scans up or down so that 
surface 11 becomes a flat surface. Surface 7’ detected in Sec-
tion II.D is also shifted with the data. In each B-scan, surface 7’  
inside the PED footprint is corrected by second-order poly-
nomial curve interpolation. After the correction, surface 7 is 
used to constrain surfaces 8 to 10, which is detected using small 
smoothness constraints, as shown in Table I. Surfaces 8 and 9 
are also corrected by interpolation within the PED footprint. In 
the end, these surfaces are converted back to their positions in 
the original OCT volume. See Fig. 11 for the flattened image 
and the results for surfaces 7 to 10. 

III. EXPERIMENTAL METHODS 
 Macula-centered SD-OCT scans of 20 eyes from 20 subjects 
diagnosed with serous PED’s and 20 normal eyes from 20 
subjects (the controls) were acquired using Topcon 3D-OCT

      
(a) 

 
(b) 

Fig. 10. PED footprint detection results. (a) Rough detection result from dif-
ference between surface 11 and 12. (b) PED footprint after edge refinement and 
rejection of false positives. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Detection of surfaces 7-10 on a flattened image. (a) Original B-scan 
with reference surface overlaid, (b) Flattened B-scan, (c) Surfaces 7-10 overlaid 
on flattened image, surface 7 is shown in red, surface 8 in green, surface 9 in 
blue and surface 10 in yellow. Surface 9 may not be visible because it overlaps 
with surface 10 in many places, (d) Surfaces 7-10 mapped back to the original 
image. 
 
1000 (Topcon Corporation, Tokyo, Japan). OCT image stacks 
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comprised of 512×64×480 voxels with voxel size of 
11.72×93.75×3.50µm3. This study was approved by the Intui-
tional review board of Joint Shantou International Eye Center 
and adhered to the tenets of the Declaration of Helsinki. Be-
cause of its retrospective nature, informed consent was not 
required from subjects.  
 To evaluate the layer segmentation results, two retinal spe-
cialists manually traced the surfaces in the B-scan images in-
dependently to form the ground truth.  Due to the time con-
sumption of manual segmentation, for each 3-D OCT volume, 
only 10 out of the 64 B-scans, which were uniformly distributed 
in the volumetric data, were traced. Among the 200 manually  
traced B-scans from the PED dataset, PED’s were present in 50  
B-scans, according to the ground truth of region segmentation. 
The average of the two tracings defined the reference standard. 
Surfaces 3，8 and 9 were excluded because they were not 
always discernible to human eyes on the available data sets. 
Surface 12 was also excluded since it was only a virtual struc-
ture used for reference. The unsigned border positioning errors 
were calculated for each surface by measuring absolute Eucli-
dean distances in the z-axis between segmentation results of the 
proposed algorithm and the reference standard. The unsigned 
border positioning errors were compared with the unsigned 
border positioning differences between the two manual tracings 
and also compared with results obtained by the general Iowa 
Reference Algorithm [14] not specifically designed to handle 
PED's. Paired t-tests were used to compare the segmentation 
errors and a p-value less than 0.05 was considered statistically 
significant. 
 To evaluate the PED volume segmentation results, one re-
tinal specialist manually segmented the PED regions in all 
B-scans to form the ground truth. The accuracy in terms of true 
positive volume fraction (TPVF), false positive volume frac-
tion (FPVF) and positive predicative value (PPV) were calcu-
lated as follows [33]: 

TPVF =  |CTP |
|CGT |

  ,                                 (3a) 

 FPVF =  |CFP |
|V|−|CGT |

  ,                           (3b) 

      PPV =  |CTP |
|CTP |+|CFP |

  ,                          (3c) 
where |∙| denotes volume, CTP  denotes the true positive set, 
CFP  denotes the false positive set,  CGT  denotes the set of voxels 
defined as PED volume in ground truth, and V denotes the total 
volume of the retina, which is defined as the volume between 
surfaces 1 and 12 detected by the proposed algorithm. 

IV. RESULTS 

A.    Parameter selection  
 For surface detection, the smoothness constraints are se-
lected according to the rules described in Section II.A and listed 
in Table I. For the tested data, the resolution is much higher in 
the x direction than the y direction. Therefore Δx  is set to 1 for 
all surfaces and Δy  varies for different surfaces in the initial 
detection level.  As surfaces 1, 7’ and 11 are the ones most 
affected by the shape of the fovea or the PED’s, large  Δy  is 
required, which is set as Δy = 6  at resolution level 1. Larger 
values are also acceptable since these surfaces have strong 
contrast and are  minimally affected by image noise. Surfaces

                 
Fig. 12. Surface segmentation errors with different smoothness constraints in 
y-direction. The surface number/label is indicated on each curve. 
 
2-6 can be affected by the fovea or the PED to some extent, 
have weaker contrast and are more easily affected by noise. 
Therefore medium Δy  is set for these surfaces, with Δy = 3 at 
resolution level 2, and Δy = 6 at resolution level 3. Surface 12 
and surfaces 8-10 on the flattened image are required to be 
smooth surfaces. Therefore small  Δy  is needed, which is set as 
Δy = 1. For the refining step in multi-resolution surface de-
tection, the surfaces are detected on a reshaped image where the 
initial position lies in the center. Assuming the initial detection 
is accurate enough, the surface position in higher resolution 
will be close to the center line. Therefore, only small smooth-
ness constraints (Δx = Δy = 1 in experiments) are needed. 
 To verify the validity of the choice of Δy , segmentation 
results are obtained on the PED dataset with Δy  in the initial 
detection level ranging from 1 to 10 for all surfaces excluding 
surfaces 3, 8 and 9. Note that the results are obtained by 
changing Δy  for one surface at a time, while the rest parameters 
are fixed with the values in Table I. Hence only the influence of 
Δy  on the current surface is analyzed, and the possible error 
propagation between surfaces is not considered. The unsigned 
border positioning errors are calculated and plotted in Fig. 12. 
As shown in the figure, for surfaces 1, 2, 4, 5, 6 and 11, the 
errors are large when Δy  is too small, showing the incapability 
in capturing surface changes. The errors decrease first with the 
increase of Δy , and after reaching the minimum, they only 
increase slightly with the increase of Δy . For surfaces 1 and 11 
with high contrast, the results are especially insensitive to the 
increase of  Δy . This confirms the effect of noise when large 
smoothness constraints are applied. The error of surface 7 is 
almost constant because the influence of  Δy  is reduced by the 
correction step. The error of surface 10 increases slightly with 
the increase of Δy , because it is detected on the flattened image.  
 For PED footprint and volume detection, the distance thre-
sholds d1, d2 and the area threshold A are selected empirically. 
However, as tested, the region segmentation performance is not 
sensitive to perturbations of these parameters. Empirically 
determined, the suggested ranges of parameters are:  d1 = 3~7, 
d2 = 1~2, and A = 30~70 in pixels.  For different combina-
tions of parameters inside these ranges, the variations of TPVF 
and PPV are both less than 1% and the variation of FPVF is less 
than 0.01%. For robustness, small values are preferred so that 
PED regions with minor elevation of RPE and small sizes 
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would not be missed. Even if some false positives caused by 
noise would be included after this step, most of them will be 
ruled out by the intensity criteria in place. As a result, low false 
positive ratios will still be obtained.  For the reported results in 
Section IV.D, d1 = 3 , d2 = 1 , and A = 30  were used. The 
intensity threshold T is set as the adaptive Otsu threshold [34] 
since the OCT scans have a double-peak histogram. 

B.    Layer segmentation results for the PED dataset  
 Examples of layer segmentation results are shown in Fig. 13 
in both 2-D and 3-D. The visualization software OCTExplorer 
contained in the Iowa Reference Algorithms [14] is used to 
show the segmentation results (including the previous figures). 
 The mean and standard deviation of unsigned border posi-
tioning errors for each surface, computed on all manually 
traced B-scans from the PED dataset, are shown in Table II, and 
compared with inter-observer variability and the errors result-
ing from employing the Iowa Reference Algorithm [14].  The 
p-values are shown in Table III, where bold numbers indicate 
that the proposed method has statistically significantly better 
performance.  Compared with the unsigned difference between 
observers, the unsigned positioning errors of surfaces 1 and 11 
are significantly smaller, the unsigned positioning errors of 
surfaces 4 and 10 are significantly bigger, and the unsigned 
positioning errors of surfaces 2, 5, 6 and 7 are statistically 
indistinguishable from the unsigned difference between ob-
servers.  The overall mean unsigned error is 7.87±3.38 μm, 
which is statistically indistinguishable from the mean unsigned 
difference between two observers (7.80±2.54 μm). Compared 
with [14], the unsigned positioning errors of surfaces 2 and 11 
are statistically significantly smaller, the unsigned positioning 
errors of the other surfaces are statistically indistinguishable, 
and the overall mean unsigned error is statistically significantly 
smaller.  
 The results in Table II only show minor improvement over 
[14] because the PED is a local structure. Only a small propor-
tion of the layers exhibits dramatic morphological changes, and 
the segmentation method for normal retinas performed well in 
other places. To better evaluate the layer segmentation per-
formance near the PED region, the mean and standard deviation 
of unsigned border positioning errors calculated only on the 50 
B-scans with PED’s, are shown in Table IV, and compared with 
both inter-observer variability and the errors resulting from 
employing the Iowa Reference Algorithm [14]. The p-values 
are shown in Table V, where bold numbers indicate that the 
proposed method has statistically significantly better perfor-
mance. The unsigned positioning error of surface 1 is signifi-
cantly smaller than the inter-observer differences. Errors of the 
other surfaces and the overall error are statistically indistin-
guishable from the unsigned difference between observers. 
Compared with [14], except that the error of surface 1 is sta-
tistically indistinguishable, errors of all the other surfaces are 
significantly smaller, and the overall mean unsigned error is 
significantly smaller. This proves that the proposed algorithm 
outperforms the algorithm [14] in segmenting abnormal retinal 
layers. 
 The mean and standard deviation of signed border position-
ing errors for each surface are shown in Table VI. For most 
surfaces, the mean signed errors are negative, indicating that

               
(a) 

 
(b)                                          (c) 

 
(d)                                          (e) 

Fig. 13. Layer segmentation results. (a) 12 surfaces overlaid on B-scan. (b)-(e) 
3-D visualization of surfaces 1, 7, 11 and 12. 
 

TABLE II 
SUMMARY OF  MEAN UNSIGNED BORDER POSITIONING ERRORS† FOR ALL 

LABELED B-SCANS OF PED DATA 
Surface Algo. 

vs. Ref. 
Obs. 1 

vs. Obs. 2 
[14] 

vs. Ref 
1 3.91±0.65 5.28±0.79 4.07±0.67 
2 7.79±2.47 7.22±1.33 9.82±2.55 
4 10.30±2.57 8.09±2.08 12.78±7.36 
5 9.14±3.83 9.48±4.59 12.36±8.81 
6 9.14±2.87 8.66±1.61 11.42±8.25 
7 7.19±3.57 7.18±1.73 8.36±4.26 

10 8.99±3.42 7.37±2.39 10.16±5.87 
11 6.53±2.28 9.09±1.36 9.49±5.38 

Overall 7.87± 3.36 7.81± 2.56 9.81±6.42 
†Mean ± SD in μm, 3.5μm = 1 pixel. 
 

TABLE III 
SUMMARY OF P-VALUES OF  MEAN UNSIGNED BORDER POSITIONING ERRORS 

FOR ALL LABELED B-SCANS OF PED DATA†  
Surface p value 

Algo. vs. Ref. 
p value 

Algo.vs. [14] 
1 <<0.001 0.2888 
2 0.2951 <<0.001 
4 0.0009 0.0846 
5 0.6493 0.0742 
6 0.2914 0.1574 
7 0.9896 0.2048 

10 0.0398 0.3036 
11 <<0.001 0.0030 

Overall 0.7357 <<0.001 
†Numbers in bold indicate statistically significantly better performance. 
 
the automated segmentation is located slightly above the sur-
faces obtained by manual tracing. This is caused by the dif-
ference in perceived edge and the position of maximum gra-
dient magnitude. 
 The best and worst performance cases are shown in Fig. 14 
and Fig. 15, respectively (surfaces 3, 8, 9 and 12 are omitted).  
In Fig. 14, the PED region is small, the retina is almost normal 
and the image quality is good. However, in Fig. 15 the PED 
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(a) 

 
(b) 

 
(c) 

Fig. 14.  Segmentation results of 8 segmented surfaces in the best performance 
case. (a) Original B-scan (b) Segmentation results overlaid on original B-scan. 
(c) Manual segmentation (average of the two tracings). 
 

TABLE IV 
SUMMARY OF MEAN UNSIGNED BORDER POSITIONING ERRORS† FOR B-SCANS 

WITH PED  

Surface Algo.  
vs. Ref. 

Obs. 1  
vs. Obs. 2 

[14]  
vs. Ref 

1 4.21±0.89  5.52±1.53 5.17±1.56 
2 8.65±3.76 7.07±1.62 10.90±3.36 
4 11.48±3.09 8.90±3.02 15.70±6.90 
5 11.81±4.30 11.87±6.20 16.08±8.45 
6 13.00±4.54 10.25±2.79 16.68±9.55 
7 8.70±2.99 10.54±3.66 14.17±5.55 

10 9.70±2.95  8.82±3.99 17.99±7.88 
11 8.59±6.52  9.41±2.41 18.55±7.60 

Overall 9.52± 4.61 9.05± 3.86 14.41±7.87 
†Mean ± SD in μm, 3.5μm = 1 pixel. 

 
occupies a large portion of the scanned area. The boundaries 
between layers are unclear, especially above the PED. Even 
with correction, the algorithm fails to retrieve the correct posi-
tion of surface 7 above PED. Therefore, poor image quality, 
probably caused by severe retinal abnormalities, can affect the 
performance of the proposed algorithm.  

C.    Layer segmentation results for the normal dataset  
 Although the proposed method is designed for retinas with 
serous PED’s, the method can be directly applied to segmenta-
tion of normal retinas. In this case, surfaces 11 and 12 will

               
(a) 

 
(b) 

 
(c) 

Fig. 15.  Segmentation results of 8 segmented surfaces in the worst perfor-
mance case. (a) Original B-scan (b) Segmentation results overlaid on original 
B-scan. (c) Manual segmentation (average of the two tracings). 

 

TABLE V 
SUMMARY OF  P-VALUES OF MEAN UNSIGNED BORDER POSITIONING ERRORS 

FOR B-SCANS WITH PED†. 

Surface  p value 
Algo. vs. Ref. 

p value 
Algo.vs. [14] 

1 <<0.001 0.4765 
2 0.0733 <<0.001 
4 0.0062 <<0.001 
5 0.9503 0.0430 
6 0.0056 0.0132 
7 0.0981 0.0140 

10 0.2834 <<0.001 
11 0.5595 <<0.001 

Overall 0.1806 <<0.001 
†Numbers in bold indicate statistically significantly better performance. 

 

TABLE VI   
SUMMARY OF  MEAN SIGNED BORDER POSITIONING ERRORS† 

Sur- 
face  

PED data Normal data 
Algo. 

vs. Ref. 
Obs. 1 

vs. Obs. 2 
Algo. 

vs. Ref. 
Obs. 1 

vs. Obs. 2 
1 1.30±1.09 - 0.88±1.30 - 0.18±0.62 - 0.50±0.78 
2 - 3.08± 3.36 1.40±2.45 - 5.03±1.75 - 0.44±0.99 
4 - 6.54±3.67 - 1.40±3.85 - 7.23±1.75 4.65±1.96 
5 - 0.38±4.76 - 3.08±6.65 0.66±0.95 - 4.32±1.99 
6 - 2.21±3.11 - 1.30±3.22 - 3.19±1.68 0.52±2.30 
7 3.39±4.03 1.05±3.08 - 0.36±0.57 - 0.74±1.31 

10 - 2.66±7.39 1.40±4.09 - 5.89±4.31 - 4.62±3.09 
11 - 3.29±3.01 3.64±3.89 - 3.68±1.35 0.54±2.24 

Overall - 1.68±4.97 0.11±4.27 - 3.11±3.33 - 0.61±3.36 
†Mean ± SD in μm, 3.5μm = 1 pixel. 
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represent the same surface and their detection results will 
overlap in most places. Even if surface 11 has more fluctuation 
due to the impact of noise, as it is obtained with a large 
smoothness constraint, the regions between surfaces 11 and 12 
will be excluded as false positives in PED detection. Then 
flattening with respect to surface 11 is just the same as was 
established in [2, 3, 6], which further removes the eye move-
ment artifacts.  Additionally, the correction of surfaces 7-9 will 
be automatically skipped when no PED region is detected. 
 To test the method’s performance for normal data, we ap-
plied the proposed method to OCT images from a control group 
of 20 normal subjects. The mean and standard deviation of 
unsigned border positioning errors for each surface are shown 
in Table VII and compared with inter-observer variability and 
the errors resulting from employing the Iowa Reference Algo-
rithm [14].  The p-values are shown in Table VIII, where bold 
numbers indicate that the proposed method has statistically 
significantly better performance. The overall mean unsigned 
error of the proposed algorithm is significantly smaller than the 
mean unsigned difference between two observers. Compared 
with [14], the overall error mean unsigned error is statistically 
indistinguishable. This proves that the proposed algorithm 
maintains its good performance for normal retinas. 

D.    Results of PED volume segmentation 
 An example of PED volume segmentation result is shown in 
Fig. 16. As serous PED is one case of symptomatic ex-
udate-associated derangement (SEAD) discussed in [20], the 
results of the proposed method are compared with those ob-
tained by the GS-GC algorithm [20] on the same dataset. In 
implementation of the GS-GC algorithm, to avoid detection of 
other SEAD regions, surfaces 11 and 12 are used as the two 
constraining surfaces.  The TPVF, FPVF and PPV of both 
methods with p values are shown in Table IX. The proposed 
algorithm achieves statistically comparable results with the 
GS-GC algorithm in all three measures.  However, the GS-GC 
algorithm is a supervised method which requires training, and 
both the initialization step using classification and the follow-
ing graph-based segmentation step is time consuming. The 
proposed method is unsupervised and less computationally 
expensive, as will be shown in Section IV.E. 
 In some case with minor elevation of the RPE (see Fig. 17), 
surface 12 may follow the elevated RPE floor instead of the 
bottom of RPE, causing false negative detection and thus 
bringing down the TPVF. The FPVF of the proposed method is 
low owning to three facts. Firstly the PED volume is relatively 
small comparing to the total retina volume. Secondly the pro-
posed method confines PED detection between the detected 
surfaces 11 and 12, thus reducing the chance of false positives. 
Finally, the false positive removal step using size and intensity 
is effective. The PPV further indicates the proportion of true 
positives among all detected regions.  
 The PED volume segmentation was also tested on the normal 
data.  A perfect FPVF = 0 was achieved, indicating that the 
algorithm is highly effective in distinguishing normal retinas 
from those with PED’s. 

E.    Computational time 
 The proposed algorithm is implemented in C++ and tested on 
a PC with Intel i7-3770 CPU@3.40GHz and 16GB of RAM, 

                                            TABLE VII 
SUMMARY OF  MEAN UNSIGNED BORDER POSITIONING ERRORS† FOR NORMAL 

DATA 
Surface Algo.  

vs. Ref. 
Obs. 1  

vs. Obs. 2 
[14]  

vs. Ref 
1 2.92±0.23  4.33±0.38 3.30±0.27 
2 7.29±1.04 5.34±0.57 7.43±0.70 
4 8.43±1.17 7.78±1.11 9.02±1.09 
5 4.62±0.68 7.43±1.32 5.81±0.89 
6 6.08±1.25 7.07±0.90 5.67±0.84 
7 2.53±0.25 4.06±0.77 3.97±0.42 

10 7.21±3.57  7.75±3.60 4.88±1.96 
11 5.39±0.89  7.66±1.59 4.79±0.81 

Overall 5.56± 2.47 9.05± 3.86 5.61±2.00 
†Mean ± SD in μm, 3.5μm = 1 pixel. 
 
 

TABLE VIII 
SUMMARY OF  P-VALUES OF  MEAN UNSIGNED BORDER POSITIONING ERRORS 

FOR NORMAL DATA†. 

Surface p value 
Algo. vs. Ref. 

p value 
Algo.vs. [14] 

1 <<0.001 <<0.001 
2 <<0.001 0.5354 
4 0.0589 0.0054 
5 <<0.001 <<0.001 
6 <<0.001 0.0274 
7 <<0.001 <<0.001 

10 0.4430 0.0049 
11 <<0.001 <<0.001 

Overall <<0.001 0.7067 
†Numbers in bold indicate statistically significantly better performance. 
 
 

TABLE IX 
PED VOLUME SEGMENTATION RESULTS, COMPARED WITH THE GS-GC 

ALGORITHM [20] 
 Proposed Algo. GS-GC Algo.[20] p value 

TPVF 87.1%±21.7% 84.1%±21.7% 0.6706 
FPVF 0.37%±0.54% 0.44%±0.78% 0.6252 
PPV 81.2%±20.2% 81.2%±25.7% 0.9675 

 
 

 
(a) 

 
(b) 

Fig. 16. PED volume segmentation results. (a) Detected PED volume overlaid 
on B-scan (b) 3-D visualization of the detected PED volume. 
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Fig. 17. False negative case of PED volume detection. 
 
where only single core is utilized. The average running time of 
the algorithm is 220±51s. The preprocessing step takes 15±5s 
in average. The detection of surface 12 is the most time con-
suming, which takes about 150±32s in average, because the 
discontinuity of edge below the PED region adds to the diffi-
culty of finding the optimal surface. For comparison, the Iowa 
reference algorithm for layer segmentation requires 62±12s and 
the GS-GC algorithm for region segmentation requires 
456±103s. 

V.   CONCLUSIONS AND DISCUSSION 
 We proposed an unsupervised method for automated seg-
mentation of retinal layers on SD-OCT scans of eyes with 
serous PED. After denoising using fast bilateral filtering, the 
B-scans are aligned using the upper boundary of the retina. This 
alignment improves the smoothness of the surfaces to be de-
tected and enhances the accuracy of the segmentation. Then the 
surfaces defining the boundaries between consecutive layers 
are detected based on multi-resolution single surface graph 
search. Surfaces 1 to 6, and a surface combined by surfaces 7 
and 10 are detected on the denoised and aligned data.  Then 
surfaces 11 and 12 corresponding to the elevated RPE and the 
estimated normal RPE floor are also detected, whose difference 
is used to find the PED footprints. Surface 11 is used as the 
reference surface for flattening of the retina. Then surface 7 is 
corrected based on its smoothness on the flattened image. 
Surfaces 8-10 are also detected on the flattened image with 
necessary corrections.  
 For the tested PED dataset, the overall layer segmentation 
errors are statistically indistinguishable from the inter-observer 
variability, and statistically significantly smaller than errors 
obtained from employing the general Iowa Reference Algo-
rithm [14]. Though the proposed algorithm is designed for 
retinas with serous PED’s, it also works well for normal retinas. 
For the tested normal dataset, the overall layer segmentation 
errors are statistically smaller than the inter-observer difference, 
and statistically indistinguishable from errors obtained from 
employing the Iowa Reference Algorithm [14]. Although the 
method is not the most efficient for normal retina segmentation, 
it represents a major advancement of the field allowing seg-
mentation of the retinal layers in both normal and diseased 
retinal images, thus bypassing a need for disease-specific di-
agnosis prior to retinal analysis.  
 Simultaneous detection and segmentation of the PED vo-
lume is also achieved. The PED volume segmentation is of high 
true positive ratio and low false positive ratio, which is statis-
tically comparable to the results obtained by the GS-GC me-

thod [20].  
 The proposed algorithm is 3-D, but some of the calculations, 
including denoising, gradient calculation for cost function and 
smoothing of the detected surfaces, are constrained in 2-D 
B-scans. This allows big difference in adjacent B-scans caused 
by low resolution in the y direction of the available data. For 
OCT data with higher resolution in the y direction, their 3-D 
counterparts should be used to fully utilize the contextual in-
formation. 
 The proposed algorithm can be extended to other patholog-
ical cases where RPE deformation occurs. It provides a means 
to remove the sub-RPE fluid region and to approximately re-
store the original shape of the retinal layers. This method can be 
extended to other pathological cases where intraretinal or sub-
retinal fluids are present. In the future, we will consider detec-
tion of these regions and using the information to improve the 
layer segmentation results. 
 In summary, as an accurate and efficient replacement of 
manual segmentation, the proposed algorithm can be utilized 
for quantitative analysis of features of individual retinal layers 
for both eyes with serous PED’s and normal eyes. The algo-
rithm also detects the PED volume, providing its size, shape 
and position information. With the current efficiency, the re-
ported work can be used in off-line clinical or pathology studies. 
However, with further optimization in implementation, addi-
tional speed-up will be accomplished and the reported approach 
will become suitable for clinical practice. 
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