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3D Fast Automatic Segmentation of Kidney Based
on Modified AAM and Random Forest
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Abstract—In this paper, a fully automatic method is proposed
to segment the kidney into multiple components: renal cortex,
renal column, renal medulla and renal pelvis, in clinical 3D CT
abdominal images. The proposed fast automatic segmentation
method of kidney consists of two main parts: localization of renal
cortex and segmentation of kidney components. In the localiza-
tion of renal cortex phase, a method which fully combines 3D
Generalized Hough Transform (GHT) and 3D Active Appearance
Models (AAM) is applied to localize the renal cortex. In the
segmentation of kidney components phase, a modified Random
Forests (RF) method is proposed to segment the kidney into four
components based on the result from localization phase. During
the implementation, a multithreading technology is applied to
speed up the segmentation process. The proposed method was
evaluated on a clinical abdomen CT data set, including 37 con-
trast-enhanced volume data using leave-one-out strategy. The
overall true-positive volume fraction and false-positive volume
fraction were 93.15%, 0.37% for renal cortex segmentation;
83.09%, 0.97% for renal column segmentation; 81.92%, 0.55%
for renal medulla segmentation; and 80.28%, 0.30% for renal
pelvis segmentation, respectively. The average computational time
of segmenting kidney into four components took 20 seconds.

Index Terms—Active appearance models, generalized Hough
transform, kidney, random forests, renal column, renal cortex,
renal medulla, renal pelvis.

I. INTRODUCTION

T HE kidney participates in whole-body homeostasis,
regulating acid-base balance, electrolyte concentrations,

extracellular fluid volume, and blood pressure. According to a
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survey conducted by the National Institute of Health in 2011,
the number of non-institutionalized adults with diagnosed
kidney disease is 4.4 million (1.9%) in the USA [1], the number
of deaths from nephritis, nephrotic syndrome, and nephrosis
is 50,476 [2]. Kidney is consisted of four different structures
with different functions, i.e., renal cortex, renal column, renal
medulla and renal pelvis [3]. Different kidney diseases affect
different part of kidney. For example, kidney tumor [4] usually
occurs in renal cortex, renal column hypertrophy [5] may exist
in renal column, medullary cystic kidney disease [6] usually
exists in renal medulla, and transitional cell cancer, renal
pelvis and ureter cancer [7] may attack renal pelvis. Moreover,
volume changes of different component may indicate change
of different renal functions [8]. The renal cortical volume and
thickness have been proven to be effective biomarkers for renal
function in many clinical situations [9]–[12]. The volumetry of
renal cortex and renal medulla was highly interesting for epi-
demiological studies [8], [13]. Renal pelvis volume calculation
is very important in diagnosing children renal pelvis disease
[14]. Especially in community medicine and epidemiological
studies, large amount of image data need to be processed.
Therefore, automatic, accurate and efficient segmentation of
kidney components has great clinical values for the diagnosis
and treatment of the kidney diseases, and for renal function and
morphological assessment [26].
However, kidney components segmentation is a challenging

task due to the following reasons: (1) the anatomical structures
of kidney are complex, which consists of four major structures:
renal cortex, renal column, renal medulla and renal pelvis, as
shown in Fig. 1; (2) the renal cortex and renal column are con-
nected and have similar intensity; (3) the renal pelvis consists
of several different structures with different intensities. (4) the
boundaries between kidneys and adjacent organs such as spleen
and liver are usually blurred.
There were several prior investigations [15]–[27] in kidney

and renal cortex segmentation in CT, MRI and Ultrasound im-
ages, including both semi-automatic [15]–[18] and fully auto-
matic [19]–[27] methods. Freiman et al. [19], Ali et al. [21] and
Chen et al. [25] applied graph cut based method. Xie et al. [23]
segmented kidney from Ultrasound images based on shape and
texture priors. For kidney segmentation in dynamicMR images,
not only the spatial information but also the timing activities,
also known as time intensity curves, were used for kidney seg-
mentation [17], [22]. Cuingnet et al. [24] used Random Forests
to detect and segment kidneys in 3D CT images. Recently, Will
et al. [26] applied threshold and shape detection based algo-
rithm, Yang [27] applied Maximally Stable Temporal Volume
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Fig. 1. Anatomy of renal cortex.

(MSTV) and principal components (PCs) based method to seg-
ment kidney into three parts (renal cortex, renal medulla and
renal pelvis) based on MRI. The studies described above clas-
sified cortex and column into one category since they have sim-
ilar high intensities. However, for precise measurement of the
renal cortex thickness, it would be more accurate to consider
only the out-layer of the kidney as the cortex and the rest as
the column. Chen et al. [25] proposed an automatic method for
renal cortex segmentation based on oriented active appearance
model (OAAM) and graph cut.
In this paper, we propose a fast fully automatic kidney

segmentation method which can segment the kidney into four
components: renal cortex, renal column, renal pelvis and renal
medulla. Two datasets were used in this paper. Dataset 1 was
acquired from subjects who donated their left kidney. By this
method, the volume change of the four renal components of
the remaining kidney before and after donation is analyzed. It
is essential for kidney function evaluation [11], [25], [28], [29].
Dataset 2 was acquired from a completely different CT system
for both normal subjects and abnormal subjects. Dataset 2 was
used to validate the robustness of the proposed method. To the
best of our knowledge, this study is the first work that segments
the kidney into four components.
The proposed method consists of two parts: localization of

renal cortex and segmentation of kidney components. In local-
ization of renal cortex, the Active Appearance Model (AAM)
method is used [30]. The AAM is widely used in computer
vision such as face recognition [31] and organ localization.
Mitchell et al. [32] extended the AAM to three dimensions and
tested it on Cardiac MR and Ultrasound Images. However, con-
ventional AAM searches the whole image which is inefficient
especially for large volume image. In this paper, we propose to
combine the 3D Generalized Hough Transform (GHT) and 3D
AAM. The 3D GHT can find the center of gravity of kidney
efficiently. Then AAM searches around the center of gravity of
kidney instead of the whole image. This combination improves
the accuracy and efficiency of AAM.
In segmentation of kidney components, the random forests

method is used. The random forests method was first proposed

by Breiman [33]. Because of its computational efficiency for
handling a huge feature space, it has been widely used in com-
puter vision domain [34]–[40]. M. Yaqub et al. [40] argued
that the traditional random forests method has two main disad-
vantages in medical image classification or segmentation: (1) a
huge feature pool with many poor features may affect the seg-
mentation accuracy; (2) equal voting by each tree is not the
best way to produce classification result. In this paper, feature
selection and weighted voting are applied to overcome these
problems for kidney component segmentation. Furthermore, we
apply the multithreading technology to speed up the segmenta-
tion process.
The contributions of this paper are summarized as follows:

1) this is the first framework which can segment kidney into
four components; 2) the 3D GHT and 3D AAM method are
fully integrated to improve the accuracy and efficiency of tra-
ditional AAM; 3) an improved random forests method is used
to segment kidney components accurately and efficiently, where
both 2D and 3D features are utilized; 4) the proposed method is
highly efficient which can segment kidney into four components
within 20 seconds.
This paper is organized as follows. In Section II, the complete

methodology of localization and segmentation is described. In
Section III, a detailed evaluation of this method in terms of its
localization and segmentation accuracy on the clinical datasets
is presented. The volume change of four kidney components is
analyzed in the section. In Section IV, we give our conclusions
and discussions.

II. METHOD

The proposed method consists of two phases: localization
of renal cortex and segmentation of kidney components. In the
localization of renal cortex phase, a method which combines
3D Generalized Hough Transform (GHT) and 3D Active
Appearance Models (AAM) is applied to localize the kidney
and estimate the thickness of renal cortex. In the segmentation
phase, a modified Random Forests (RF) method is proposed
to segment the kidney into multiple components based on
the result from localization phase. Before the segmentation
process, renal cortex thickness table and thick constraint model
are built, which are used to help the segmentation of cortex and
column. Fig. 2 shows the flowchart of our proposed method.

A. Localization of Renal Cortex

1) AAM and GHT Training: During the model building, the
anatomical correspondence between training images needs to
be established. Since the location and size of the kidney may
change considerably from patient to patient, and slice thick-
ness from different CT scanners may differ a lot, in order to
get sufficient physical location correspondences between sub-
jects to build 3D AAM [18], [20], interpolation of image slices
is needed. During the training stage, the top and bottom slices
of kidney are first manually identified. Then linear interpolation
is applied to generate the same number of slices for each sub-
ject in the training set. Landmarks are manually specified on the
inner and outer boundaries of renal cortex for each axial slice.



JIN et al.: 3D FAST AUTOMATIC SEGMENTATION OF KIDNEY BASED ON MODIFIED AAM AND RANDOM FOREST 1397

Fig. 2. Flowchart of the proposed method.

The conventional 3D AAM method [41], [42] is applied to
construct the renal cortex model. The model includes both shape
and texture information.
The mean and standard deviation of thickness of the renal

cortex with respect to slice and direction is also computed to
construct a renal cortex thickness model, as shown in Fig. 3.
This model is used for helping the segmentation of cortex and
column in the later stage.
Generalized Hough transform can be used to detect instance

of an object with arbitrary shapes, independent of scale and
orientation [43], [44]. In GHT, the shape of the target object
is stored in a reference table called R-table. Then an accumu-
lator matrix indicating the possible position of the object is con-
structed according to the R-table. Khoshelham [45] extended
this method to detect 3D objects in volumetric data.
In this paper, since the outer surface of kidney (renal cortex)

is more distinct, as shown in Fig. 1, this surface is first detected.
The outer surface of the mean shape of renal cortex obtained

Fig. 3. The mean thickness model of renal cortex.

Fig. 4. Parameters involved in the 3D GHT computation. (a) The red arrow
shows the vector connecting the center of gravity and an arbitrary point on the
surface. The green arrow shows the normal direction of the point on surface;
(b) The normal direction of a point on surface is defined by two angles and
; (c) The direction of the vector connecting the surface voxel to the center of

gravity is defined by two angles and .

by the 3D AAM is stored in the R-table. For every voxel on
the outer surface, the surface normal direction, and the length
and direction of a vector connecting the surface voxel to the
center of gravity are computed as shown in Fig. 4. The surface
normal directions are defined by two orientation angles and ,
which serve as indices in the R-table to look up the length, l, and
connecting vector direction, , . Fig. 5 illustrates the R-table.
2) Renal Cortex Localization and Thickness Table Construc-

tion: The localization method is based on a combination of 3D
GHT and 3D AAM method. The AAM method matches a new
data to the appearance model through minimizing the root mean
square (RMS) intensity between the new data and appearance
model instance by modifying the affine transformation, global
intensity parameters, and appearance coefficients. However, in
conventional AAM, the whole volume is searched to obtain an
accurate matching, and the computational cost is high. To im-
prove the efficiency, in this paper, the 3D GHT is applied to
initialize the searching range by locate the center of gravity of
the renal cortex.
Define as a candidate center of gravity of

renal cortex, and as a voxel in the test image,
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Fig. 5. The illustration of a 3D GHT R-table. The mean outer surface is stored
in the R-table. After computing the normal vector of every point on the outer
surface, the angles and sever as indices in the R-table to look up the length,
l, and connecting vector direction, , .

Fig. 6. The illustration of 3D AAM searching area. The outer green cube is the
full searching area, while the red dash line shows the restrictive searching area
determined by 3D GHT.

if is on the outer surface of renal cortex, their positions sat-
isfy the following equation:

(1)

A 3D accumulator array with , , as the indices is con-
structed. The normal direction for every voxel in the test image
is obtained and used to look up , and in the R-table. Then

, and are calculated by (1). Each set of , and
values cast a vote to the corresponding bin in the accumu-

lator array. The bin with the maximum votes indicates the most
possible center of gravity of renal cortex, as shown in Fig. 7(b).
Because other organs may have the similar shape with kidney,
several local maximums could be found. The priori anatom-
ical knowledge is applied to determine which one is the center
of gravity of the right kidney. Then 3D AAM is performed
in a relative small area around the center of kidney with size

, as shown in Fig. 6.
Once the localization task is accomplished, the position of the

kidney is computed and an initial segmentation of renal cortex is
obtained, as shown in Fig. 7(c). The localization results are used
to construct a renal cortex thickness table, which help for sepa-
ration of cortex and column. During this step, first, the center of
gravity of kidney is calculated for each slice ( slice). Then
directions are taken evenly around the center of gravity. In each

Fig. 7. The illustration of localization step. (a) A testing abdominal CT image.
(b) The voting result of GHT, the red color indicates voxels with high possibility
as the center of gravity. (c) The result of localization.

Fig. 8. The illustration of cortex thickness table construction. (a) We calculate
the distance t between the outer and inner surface in direction (the red line is
the distance in the current direction). The corresponding , k and t are saved in
thickness table (b).

Fig. 9. Extract the Kidney Area From the Original Image.

direction, the distance t between the outer and inner surfaces
is calculated as the cortex thickness and stored in the thickness
table with size . The slice number and direction angle
serve as indices in thickness model to lookup thickness as

shown in Fig. 8.

B. Segmentation of Kidney Components
In this part, the kidney will be segmented into four compo-

nents, renal cortex, renal column, renal medulla and renal pelvis.
Before segmentation, the volume of interest for the kidney is
extracted based on the localization result, as shown in Fig. 9.
During the segmentation, the RF is applied to classify the voxels
into four categories: renal cortex/column, renal medulla, renal
pelvis and background. The thickness table and thickness con-
straint model are applied to separate column from cortex.
1) Features Extraction and Selection: In this paper, both 2D

and 3D features are calculated. The 2D feature set includes: hog
features [46], Gabor [47] features, Robert and hessian features.
Hog features provide orientation information, Gabor features
provide texture information, Robert and Hessian features pro-
vide edge information of objects.
The 3D features describe different kinds of relationship be-

tween the voxel of interest (VOI) and voxels around it (both
intra and inter slice) and help to distinguish voxels with similar
intensity and edge information [48]. Table I shows the parame-
ters and description of each feature set (see appendix for more
details about the features).
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Fig. 10. Histograms of feature values for two feature value extracted from one
training image. (a) Histogram of voxel value of Gabor feature extracted from the
image. (b) Histogram of voxel value of Hog feature extracted from the image.
We find that feature values do not follow normal distribution strictly. (a) His-
togram of value of Gabor (b) Histogram of value of Hog feature extracted from
the image. We find that feature values do not follow normal distribution strictly.

Fig. 11. An unseen voxel (v) starts from the root node and across the trained
tree end in a leaf node. The red edges represent the path of v. The score of v in
this tree is: . This score serves as the
weight in our weighted voting RF.

The accuracy of the RF classifier is strongly dependent on the
discriminative ability of features. In volumetric images, a huge
number of features can be extracted. However, as proved in [40],
weak features contribute little to RF classifier decision, or even
lead to poor classification results. To overcome this problem, a
feature selection phase is needed.
In our work, information gain ratio (IGR) [49] is used as the

metric to split a node in RF trees. Features with high IGR are
considered as strong features. For each feature, the IGR is cal-
culated as follows:

(2)

In which, is data set, represents attribute set, and rep-
resents the probability for . is information gain.
is split information.
We found from the experiments that only a small number of

the features have a high IGR. It means only a few features sig-
nificantly contribute to RF classification. In this work, 100 best

TABLE I
MAIN PARAMETERS AND FUNCTION OF FEATURE SET.

features with the highest IGR are chosen to train the RF trees.
This step serves as a preprocessing for the RF training.
2) Random Forests Training: As shown in Table I,

features are calculated from training data set as the main
feature pool. Then features are chosen from the
main feature pool as the strong feature pool.
Before training random trees, a parameter F is randomly

chosen as the size of features used in building a tree. At the
beginning of building each tree, a training example set is
randomly chosen [33].
By computing the histogram of features of all data in the

training set, we found that they did not follow normal distri-
bution strictly, as shown in Fig. 10. Therefore, we didn't use the
threshold picking strategy based on normal distribution [39], but
evenly selecting threshold value for our features.
RF is a learning-based technique in which the ground truth

of training set was used to build multiple decision trees with a
randomized strategy. A decision tree is a tree where each node
is a classifier, which splits the training samples into two groups.
In tree building, the classifier that maximizes a specific metric,
such as IGC, is chosen for each node. A random tree starts from
a root node and ends with leaf nodes. Each leaf node contains a
likelihood for each class that can be used to generate the classifi-
cation decision. RF training is a recursive process. The creation
of a tree stops when meets two situations: 1) the maximum tree
depth is reached; 2) a node split all the current samples into ei-
ther left child or right child.
To summarize, the RF training is implemented as follows:

Initialization:

Import parameters:

T, tree number; D, max tree depth; G, number of sampling
each feature

Calculate parameter: F

Training:

For to T
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Sub_initial:

Random sample with replacement from original data
set.

Evenly sample each feature.

Create classifier:

1: Find best score and save current feature, threshold and
depth:

For to F

For to G

Calculate current score

EndFor

EndFor

2. Split current data into left or right according to the
feature and threshold.

3. If or or
)

Stop

Else

Create classifier with child

Endif

EndFor

3) Random Forests Classification: In the RF testing phase,
a voxel of a test image passes through each tree starting from
the root node. Once enters a node, it enters either the left
child or the right child according to decision of the current clas-
sifier, until it reaches a leaf node, where the probabilistic dis-
tribution for each class is obtained. In
traditional Random Forests, the distributions from all trees are
equally combined to form the final decision for classification.
In this paper, a weighted voting mechanism [39] is applied,

which outperformed the even voting method in traditional RF
[33]. The IGR for each node is a score indicating its classifica-
tion ability. The mean of scores is calculated in the path as
passes through a tree, as shown in Fig. 11. The voting mecha-
nism is described as follows:

(3)

where is the weight for each tree.

Fig. 12. RF classification result (a) one slice of the original volume data.
(b) One slice of RF result.

Fig. 13. The illustration of the cortex estimation. We can estimate the thickness
t (the yellow line show in right figure) of renal according to the current slice k
and direction in the thickness table.

Fig. 12 illustrates the result of the RF method. To summarize,
our RF testing is running as follows:

1. Calculate features for test image

2. Import unseen sample v

3. For to T

Test(v):

If current node is a leaf node

Stop and return label

Else

If v.at (node.feature).value node.threshold

Else

Endif

Endif

EndFor

4. Calculate weight

5. Voting and output result

4) Renal Cortex Segmentation: In the RF classification, the
renal cortex and renal column are considered as one category
because their intensity and texture are very similar. Even the
experienced expert can hardly separate them accurately. Here,
the predefined renal cortex thickness model is used to separate
renal column from renal cortex.
As the outer surface of renal cortex is more distinct, the inner

surface of renal cortex, i.e, the boundary between cortex and
column is calculated by finding the cortex thickness from the
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Fig. 14. The results of our segmentation method. The four panels show renal
cortex, renal column, renal medulla and renal pelvis respectively.

thickness table. The thickness of current slice k and direc-
tion is first looked up from the thickness table, as shown in
Fig. 13, and then corrected by (4).

if:
if:
else

(4)

where and are the mean and standard deviation of all
thickness values in the thickness table. This correction is to pre-
vent large deviation of thickness caused by noise. Once the inner
boundary of cortex is decided, the voxels further inside the inner
boundary are regarded as renal column. With this method we
distinguish cortex from column efficiently.
5) Post-Processing: After this process, renal cortex, renal

column, renal medulla and renal pelvis as well as background
are segmented. Morphological methods are also applied.
Opening operation is applied to remove isolated points, fol-
lowed by closing operation to fill small holes. Both open
operation and close operation are implemented only once. The
mask size of opening and closing is set as 3 3. The morpho-
logical operations make the segmentation results smooth, but
more opening and closing operations or bigger mask can lead
to loss of details near boundaries. The result of one slice is
shown in Fig. 14.

III. EXPERIMENT AND RESULTS

A. Implementation Detail
1) Image Dataset and Ground Truth: Two datasets were used

to evaluate the proposed method as follows.
Dataset 1: Abdominal images were acquired during preop-
erative screening from 27 subjects before kidney donation.
Among these 27 subjects, 10 also had contrast-enhanced
CT images after nephrectomy.
The dataset was acquired from two different types of CT
scanner (GE Medical systems, Light -Speed Ultra, and
Philips, Mx8000 IDT 16). The in-plane pixel size ranged
from 0.55 to 1 mm. The slices thickness ranged from 1 to
5 mm. In total, we have 37 volume images. Among which,
22 images had slice thickness less than 2.5 mm, 15 im-
ages had slice thickness greater than 2.5 mm. The slice
number of original abdominal images ranged from 51 to
525. The slice number of kidney area in each abdominal
image ranged from 20 to 220.
Dataset 2: Abdominal images were acquired from 5 normal
subjects and 5 abnormal subjects. Among the 5 abnormal
subjects, they had kidney stone or polycystic kidney.

The dataset was acquired from Siemens SOMATOM sensa-
tion 64. The in-plane pixel size ranged from 0.53 to 0.80 mm.
The slice thickness ranged from 0.7 to 1 mm. The slice number

Fig. 15. Mean TPVF/FPVF of renal cortex with different tree number and
depth. (a) and (c) Accuracy with different tree number and fixed tree depth 12.
(b) and (d) Accuracy with different tree depth and fixed tree number 15. The
segmentation accuracy tendency of column, medulla and pelvis are similar.

of original abdominal images ranged from 268 to 360. The slice
number of kidney area in each abdominal image ranged from 70
to 100.
Two independent trained observers (user1 and user2)

performed manual segmentation as ground truth. Both the
observers were experienced radiologic technologists (X. Wang
and B. Zhang in the author list). Each observer was blinded
to the results of the other. The observers manually drew the
kidney components in a slice-by-slice mode using ITK-snap
(http://www.itksnap.org).
As the training and testing of each tree in RF is indepen-

dent, we implement RF with multithreading technology. The
proposed framework was implemented and tested on a 64-bit
system computer (Intel Core i7–3770 CPU, 3.4 GHz and 8 GB
RAM).
2) Parameter Settings: Before the localization, all the im-

ages were interpolated into 32 slices. The size of each testing
image was after interpolation. In the localiza-
tion phase, after the center of gravity of kidney is found for a test
image by GHT, we set the AAM searching range as . As
shown in Table II, searching range of and
both resulted in larger errors. This was because searching in a
large range might give false positive that deviated a lot from the
true center of gravity, while searching in a small range might
miss the correct point. Moreover, as also shown in the table,
searching in the range does not cost much more time
than the case.
For segmentation, the VOI of kidney area was extracted from

each test data based on the result of localization phase. We set
the VOI size as , centered around the center of
gravity of kidney. The size is large enough to
contain the whole kidney. In RF segmentation phase, parame-
ters were chosen empirically. M (403) features were calculated
as the main feature pool. N best features were selected by the
IGR criteria. We set N approximately 25% of . The
number of features F used in building a single tree was randomly



1402 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 6, JUNE 2016

selected, as required by the RF method. The number of trees T
was set as 15, and the maximum tree depth D was set as 12. In
the experiments, larger T and D brought little improvement to
the segmentation accuracy. Fig. 15 shows the segmentation ac-
curacy of renal cortex with different T and D. The other compo-
nents have similar tendency regarding segmentation accuracy.
3) Methods for Comparison: Since the proposed method

is the first one trying to segment kidney into four parts, it is
hard to find related work for comparison. We compare the
proposed method with other two methods. 1) Graph cut based
method (GC). Graph cut is widely applied in medical image
segmentation and its accuracy and robustness have been proved
in [51]–[54]. In this method, graph cut is applied to segment
the retinal cortex and column from the background. For fair
comparison, the renal cortex localization is the same with the
proposed method. The initial cortex obtained by localization
serves as the foreground seed for GC, and the area outside the
kidney serves as the background seed. Then threshold is applied
to segment renal medulla and renal pelvis. We calculate the
average intensity of cortex/column , then choose
as the threshold for medulla and for
pelvis. The same cortex thickness model is used to separate
renal column from renal cortex.
2) Binary random forest based method (BRF). Note that the

graph cut can only segment one target object, while RF can
finish multi-target task. To demonstrate the advantages of RF,
RF is also used as a binary classifier in this strategy. Renal cortex
and renal column are segmented as one part from the back-
ground by random forests classifier. The other steps are keeping
the same as in GC based method.
We also compare the renal cortex segmentation results of

the proposed method with those obtained by the OAAM-GC
method [25].
Different methods were implemented on Dataset 1 for per-

formance comparison. The proposed method was also tested on
Dataset 2 for robustness evaluation.

B. Experimental Results
In this section, we demonstrated both qualitatively and quan-

titatively the performance of the proposed kidney component
segmentation method. We consider manual segmentation per-
formed in this data set to constitute a surrogate of true segmen-
tation for assessing the localization and segmentation accuracy
of our methods.
1) Correlation Evaluation: The proposed method and

manual segmentation have strong correlation, with Pearson‘s
correlations between inter-observer variation (user 1 and user
2), proposed method and user1, proposed method and user2
are: 0.93, 0.92, 0.94 for renal cortex; 0.90, 0.85, 0.82 for renal
column; 0.96, 0.92, 0.92 for renal medulla; 0.92, 0.88, 0.90
for renal pelvis. Because the proposed method has a strong
correlation with both user1 and user2, the user1 is chosen
arbitrary as reference.
2) Renal Cortex Localization: The kidney component seg-

mentation method is highly depends on the renal cortex local-
ization step. Our results of renal cortex localization are shown
in Fig. 16. To analyze the results quantitatively, the average dis-
tance (AD) for kidney centers between ground truth and local-

Fig. 16. The experimental result for renal cortex localization is shown in dif-
ferent slice. The original image size is .

TABLE II
COMPARISONS BETWEEN 3D AAM AND THE PROPOSED METHOD

ization results, and the running time for the proposed localiza-
tion method and traditional 3D AAM are used. The AD for the
proposed localization method is voxels with the
searching area , while the AD for conventional 3DAAM
is (Table II). As shown in Table II, the proposed
method has better performance with a shorter running time com-
pared to conventional 3D AAM.
3) Kidney Component Segmentation: Since the kidney com-

ponent segmentation is the key part in the proposed framework,
more comprehensive comparison and evaluation are conducted.
Fig. 17(a) shows the original image of one particular patient,
Fig. 17(b) shows the ground truth and Fig. 17(c) shows the re-
sults of the proposed method. All the images have been cropped
for the best view. Comparison between different segmentation
method and ground truth was shown in Fig. 18. Fig. 19 shows
3D views of the segmentation result by the proposed method.
The results of segmentation part accuracy are expressed in

true positive volume fractions (TPVF) and false positive volume
fraction (FPVF). The accuracy numbers for the kidney compo-
nent segmentation is the average accuracy across cases. TPVF
indicates the fraction of the total amount of tissue in the true
segmentation by the method:

(5)

FPVF denotes the amount of tissue falsely identified by the
method:

(6)
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Fig. 17. The experimental results for kidney structures segmentation. Red part represent renal cortex, green part represent renal column, blue part represent renal
medulla, while yellow part represent renal pelvis. (a) is original image. (b) is ground truth. (c) is the result of the proposed method.

Fig. 18. Comparison between different segmentation method and ground truth.
The ground-truth segmentation and auto-method segmentation are overlaid on a
single central slice. The red part represents ground truth and blue part represents
automatic method. Magenta part is the overlap of ground truth and automatic
method.

Fig. 19. Renal cortex, renal column, renal medulla and renal pelvis are shown
in 3D view respectively.

Where is the set of voxels in the true-positive delin-
eation, is the set of voxels in the ground truth, is the set

Fig. 20. One case where localization result is poor but segmentation result is
good. (a) the original image. (b) the cortex localization result. (c) extracted VOI
(d) the segmentation result of kidney components.

of voxels falsely identified, is assumed to be a binary scene
with all voxels in the scene domain, and denotes volume.
Paired t-tests were used compare the segmentation accuracy and
a p-value less than 0.05 was considered statistically significant.
Renal cortex is the most important part in kidney. As shown

in Table III, both TPVF and FPVF for renal cortex segmenta-
tion of the proposed method are
significantly better than GC , and
OAAM-GC . The performance of our
method for segmenting renal column, renal medulla and renal
pelvis are also better than GC and BRF.
The P-values for paired t-test are shown in Table IV. And the

average running time for segmenting one image consisted of lo-
calization/initialization and segmentation is shown in Table V,
GC and BRF have the same localization step with the proposed
method. Compared to GC, BRF and OAAM-GC, the segmenta-
tion accuracy of the proposed method gets improved. Moreover,
our method is much more computationally efficient.
4) Robustness Evaluation: The proposed method consisted

of two phase: localization and segmentation. As shown in
Table III, we can see that the performance of the later stage
(segmentation) get much improved compared to localization
stage (the average TPVF/FPVF for renal cortex of localization
was 77.23%/0.80%, while of segmentation was 93.15/0.37
based on Dataset 1).
We chose a case in dataset 1 whose localization result was

worse to see if the segmentation stage can still segment the
kidney into 4 components accurately.
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TABLE III
THE SEGMENTATION RESULTS AS TPVF AND FPVF FOR PROPOSED METHOD, GC, BRF AND OAAM-GC ON DATASET 1.

TABLE IV
P-VALUES FOR PAIRED T-TEST BETWEEN THE PROPOSED

METHOD AND METHODS FOR COMPARISON

TABLE V
COMPUTATIONAL TIME OF TESTING (SECOND)

As shown in Fig. 20, the kidney localization was not very ac-
curate because of the blurred boundary of the kidney. The dis-
tance of kidney centers between ground truth and localization
result of this case is 8.83 voxels while the AD (the average dis-
tance for kidney centers between ground truth and localization
results) is 5.42. The TPVF/FPVF for renal cortex of this case
after localization was 67.91%/1.05%.
With this localization result, the segmentation of our pro-

posedmethod can still segment the kidney into four components
as shown in Fig. 20(d). TPVF/FPVF for renal cortex, column,
medulla and pelvis of this case by the proposed method
were 90.92%/0.74%, 81.87%/1.48%, 78.82%/0.52%, and
72.78%/0.10% respectively.
In order to evaluate the performance of the proposed method

on images with different slice thickness, the segmentation
results on dataset 1 were separated into two groups based on
slice thickness: group 1 and group
2 . The quantitative comparison was
shown in Table VI and Table VII. As shown in Table VI the
proposed method can segment kidney into 4 components accu-
rately on images with different slice thickness. The p-values in

Fig. 21. Kidney components volume change of each case by the proposed
method.

Table VII shows that the segmentation results of our proposed
method did not have statistically significantly difference on
images with different slice thickness except for cortex.
The robustness of the proposed method was also tested on

different dataset from different CT system. We trained using
Dataset 1, and then tested on Dataset 2. Because the slice thick-
ness differs a lot from different CT system, linear interpolation
was implemented as described in Section II. The segmentation
results expressed as TPVF and FPVF are shown in
Table VIII. As shown in this experiment, the proposed method
can segment kidney into four components for different datasets
accurately.
5) Volume Change of Kidney Components: By the proposed

method, the volume change of the four components of the re-
maining kidney before and after kidney donation can be calcu-
lated. For the 10 donors with both preoperative and postopera-
tive CT scans, the cortex, column, medulla and pelvis volume
of the remaining kidney were , ,

, before donation, respectively; and
, , ,

after donation, respectively. The mean volume change of renal
cortex, column, medulla and pelvis were 35.1%, 8.5%, 33.4%
and 35.8% increasing, respectively. Fig. 21 shows the volume
change of four kidney components of each case. The volume of
four kidney components increased in most cases. The increase
of renal cortex and medulla volume was statistically significant,
as shown in Table IX. In 3 cases, one component (column or
pelvis) volume decreased after donation. And in only one case,
both column and pelvis volume decreased. The volume change
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TABLE VI
THE SEGMENTATION RESULTS AS TPVF AND FPVF FOR PROPOSED METHOD ON THE TWO GROUPS OF DATASET 1.

TABLE VII
P-VALUES FOR TWO-SAMPLE T-TEST BETWEEN THE SEGMENTATION

RESULTS OF KIDNEY COMPONENTS FOR GROUP 1
AND GROUP 2

of kidney components especially for renal cortex was closely
related to kidney function recovery [29].

IV. CONCLUSION AND DISCUSSION

In this paper, we proposed a fast fully automatic method for
kidney components segmentation. The proposed method con-
sists of two main parts: localization of renal cortex and seg-
mentation of kidney components. In the localization phase, a
fast localization method which effectively combines 3D GHT
and 3D AAM is proposed, which utilizes the global shape and
texture information. In the segmentation phase, a modified RF
method and a cortex thickness model are proposed to efficiently
accomplish themulti-structure segmentation task. The proposed
method was tested on a CT dataset comprised of 37 images.
To the best of our knowledge, this framework is the first

one trying to segment kidney into four components. In this
paper, we combined 3D GHT and 3D AAM effectively, which
is much more accurate and efficient than the conventional
AAM: voxels versus voxels
for accuracy, 15 seconds versus 33 seconds for efficiency. The
improved random forests method makes use of both 2D and
3D features to segment kidney components accurately and
efficiently. With multi-thread technology, the whole workflow
for segmenting one test image is highly efficient, which took
only 20 seconds.
In this paper, we have compared the proposed method to

GC, BRF and GC-OAAM. GC method depends on foreground
seed and background seed which often require manual input.
In GC-OAAM, the OAAM method which combines live wire
[50] and AAM to improve the segmentation performance, how-
ever, live wire is difficult to extend to 3D. Therefore, OAAM
is a 2D method which cannot make use of the context informa-
tion among slices. Comparing to above methods, the proposed
method is a real 3D and fully automatic method. The proposed
method consists of two main parts: localization and segmenta-
tion. For localization, it is based on 3D GHT and AAM, which
is fully automatic. For segmentation, the modified RF method

does not require seeds input, which is also automatic. And it uti-
lizes 3D spatial information. Thus, the proposed framework is a
3D fully automatic method, which overcomes problems existing
in GC and GC-OAAMmethod. As shown in Tables III–V, both
TPVF and FPVF of the proposed method are improved com-
pared to the GC, BRF and OAAM-GC. Hence, efficiency of the
proposedmethod is improved compared to GC and GC-OAAM.
Moreover, the proposed method is also more efficient. The lo-
calization and segmentation cost only 15 second and 5 seconds,
while for the GC-OAAM, initialization, kidney segmentation,
and cortex segmentation costs 40 seconds, 35 seconds and 30
seconds, respectively.
It is important to notice that the segmentation results for renal

pelvis are not as good as other kidney components, which may
be due to the following reasons: 1) the renal pelvis consists of
different issues which have different intensities; 2) the shape of
renal pelvis varies a lot; 3) the renal pelvis extends out of the
kidney and is connected to other organs. Further investigations
will be explored in the near future.
Our proposed method can segment kidney into four compo-

nents accurately and efficiently. Volume and structure change of
each component (renal cortex, column, medulla and pelvis) in
kidney can be analyzed by the proposed method based on CT
images, while most existed methods only analyzed volume and
morphology of whole kidney or renal cortex. The correlation
between volumes of kidney components and other biomarkers
like serum creatinine [28], glomerular filtration rate (GFR) [55]
and effective renal plasma flow (ERPF) [55] can be analyzed.
The Serum creatinine, GFR and ERPF are important biomarkers
to evaluate kidney function. The correlation between volume of
kidney and these biomarkers can provide both kidney anatomy
and function information. It is important for clinical application,
such as evaluation of potential kidney donors [11] and predic-
tion of recipient renal function [28]. Disease diagnosis, post-
operative assessment and other clinical application can benefit
from our proposed method. Beside kidney segmentation, our
proposed method can be also used to segment other organ with
complex structure, such as heart and brain.
Currently the proposed algorithm works well for kidneys

whose structures are not significantly altered by diseases. If dis-
eases such as kidney tumor causes dramatic change in kidney
morphology or texture, our modified AAM which are trained
on the normal dataset may not perform well. For renal cortex
and column segmentation, the renal cortex thickness model is
also designed for normal cortex shape. A more flexible cortex
model will be developed in the near future. For random forest
classification, to segment kidney with significant change in
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TABLE VIII
THE SEGMENTATION RESULTS AS TPVF AND FPVF FOR PROPOSED METHOD ON DATASET 2.

TABLE IX
P-VALUES FOR PAIRED T-TEST BETWEEN THE KIDNEY
COMPONENTS VOLUME BEFORE AND AFTER DONATION

morphology or texture, training on specific dataset is also de-
sired. Another limitation of the proposed method is all images
used in this paper were contrast-enhanced. The segmentation
task is more difficult for non-contrast-enhanced CT images.
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