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FEM-Based 3-D Tumor Growth Prediction
for Kidney Tumor

Xinjian Chen, Ronald Summers, and Jianhua Yao*

Abstract—It is important to predict the tumor growth so that
appropriate treatment can be planned in the early stage. In this
letter, we propose a finite-element method (FEM)-based 3-D tu-
mor growth prediction system using longitudinal kidney tumor
images. To the best of our knowledge, this is the first kidney tu-
mor growth prediction system. The kidney tissues are classified
into three types: renal cortex, renal medulla, and renal pelvis. The
reaction–diffusion model is applied as the tumor growth model.
Different diffusion properties are considered in the model: the dif-
fusion for renal medulla is considered as anisotropic, while those of
renal cortex and renal pelvis are considered as isotropic. The FEM
is employed to solve the diffusion model. The model parameters are
estimated by the optimization of an objective function of overlap
accuracy using a hybrid optimization parallel search package. The
proposed method was tested on two longitudinal studies with seven
time points on five tumors. The average true positive volume frac-
tion and false positive volume fraction on all tumors is 91.4% and
4.0%, respectively. The experimental results showed the feasibility
and efficacy of the proposed method.

Index Terms—Finite-element method (FEM), kidney tumor, seg-
mentation, tumor growth prediction.

I. INTRODUCTION

K IDNEY cancer is among the ten most common cancers
in both men and women. Overall, the lifetime risk for

developing kidney cancer is about 1 in 75 (1.34%) [1]. It is
important to predict the kidney tumor growth rate in clinical
research so that appropriate treatment can be planned.

During the last three decades, the methods for simulating
tumor growth have been extensively studied. Representative
methods include mathematical models [2], [3], [19], cellular au-
tomata [4], finite element [3], [5], [19], and angiogenesis-based
methods [6]. Swanson et al. [2] proposed to use the reaction–
diffusion model to prediction the tumor growth in order to en-
hance the reality of medical imaging and highlight the inade-
quacies of current therapy. Clatz et al. [3] and Hoge et al. [19]
improved this model by coupling diffusion model with biome-
chanical deformation. The techniques were applied to simulate
the 3-D growth of brain tumors in MRIs. Mallet and Pillis [4]
presented a model using cellular automata and partial differ-
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ential equations (PDEs) to describe the interactions between a
growing tumor next to a nutrient source and the immune system
of the host organism. Mohamed and Davatzikos [5] present a 3-D
mechanical model for simulating large nonlinear deformations
induced by brain tumors to the surrounding encephalic tissues
using the finite-element method (FEM). Tumor-induced angio-
genesis has been modeled by many researchers. Lloyd et al. [6]
presented a model of solid tumor growth, which can account
for several stages of tumorigenesis. Plank et al. [24] proposed a
nonlattice model to simulate sprouting angiogenesis. However,
most of these methods are focused on brain tumor growth pre-
diction. Only a few can be found for organs in the body region.
Pathmanathan et al. [7] proposed to use the FEM and nonlinear
elasticity to build a 3-D patient specific breast model. However,
this method was not for tumor growth prediction. Instead, it was
used to predict the tumor location.

The growth rate of renal tumors can be very slow. Kassouf
et al. [9] followed up 24 patients over a period of average 24
months, and found noticeable tumor growth in only 5 patients
during the surveillance period. Since the growth is slow, longi-
tudinal studies over a long period of time are required to monitor
the disease progress. A tumor growth prediction based on longi-
tudinal studies over a short time period can help the physicians
to plan the treatment in the early stage.

In this letter, we propose a tumor growth prediction system
for kidney tumor based on FEM. The reaction–diffusion model
is applied to model the kidney tumor growth and the FEM is
used to simulate the diffusion process. The kidney tissues are
classified into three main types: renal cortex, renal medulla,
and renal pelvis (or collecting system). Based on [8] and [14],
different diffusion properties are assigned to different kidney
tissues: the renal cortex and renal pelvis are considered to be
isotropic, while renal medulla to be anisotropic. The estimation
of the tumor growth model parameters is essential for the tumor
growth prediction. Clatz et al. [3] computed the brain tumor
diffusion coefficients using the diffusion tensor image based
on the assumption that the anisotropic ratio of diffusion is the
same for water molecules and tumor cells. However, further
experiments are needed to validate this hypothesis. In this letter,
we propose an automated estimation of the model parameters
via optimization of an objective function reflecting the overlap
accuracy, which is executed in parallel using hybrid optimization
parallel search (HOPSPACK) [22].

II. FEM-BASED TUMOR GROWTH PREDICTION

A. Overview of the Proposed Approach

The proposed tumor growth prediction system consists of
three main phases: training, prediction, and validation. The
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Fig. 1. Flowchart of the proposed tumor growth prediction system.

flowchart is shown in Fig. 1. Suppose the longitudinal study
has n + 1 time points. For the purpose of validation, we use
first n time-point images for training, predict the tumor status
at the n + 1th time point, and validate with the n + 1th images.
In clinical practice, all n + 1 images are used to train the model
parameters and predict the tumor status at a future time point.
The training phase is composed of five steps. First, image reg-
istration and segmentation are conducted on the kidney images.
Second, tetrahedral meshes are constructed for the segmented
kidney and tumors, respectively. Third, the reaction–diffusion
model is applied as the tumor growth model, and FEM is used
to solve this PDE. Fourth, the parameters of the tumor growth
model are optimized by HOPSPACK. Fifth, after computing the
parameters based on the first n image, the model parameters for
prediction at the n + 1th time point are estimated by an exponen-
tial curve fitting based on the nonlinear least-squares method.
In the prediction phase, the estimated growth parameters are
applied to the tumor growth model to compute the predicted
result for time point n + 1 using image at time point n. In the
validation phase, the predicted result is validated by comparing
with image n + 1.

B. Registration and Image Segmentation

The baseline study is used as the reference study, and all other
studies are registered to it via a rigid transformation. Then, the
kidney is segmented by a graph-cut-oriented active appearance
method (GC-OAAM) [10]. This method synergistically com-
bines the active appearance, live-wire, and GC methods to take
advantage of their complementary strengths. The details can
be seen in [10]. After the kidney is segmented, the tumors, re-
nal cortex, and renal pelvis are manually segmented, and the
remaining tissues are treated as renal medulla.

C. Meshing

A tetrahedral mesh is built for the segmented tissues. The full
meshing procedure is composed of the following three steps.

TABLE I
DIFFUSION PROPERTIES (D) OF DIFFERENT KIDNEY TISSUES

1) A surface mesh is first generated for the segmented tissues
(kidney and tumors) by the marching cube algorithm [11].

2) This surface mesh is then decimated by the ISO2Mesh
method [12].

3) The volumetric mesh is finally generated from the surface
mesh also by the ISO2Mesh method [12].

D. Tumor Growth Model

The reaction–diffusion model is adopted to model the growth
and spreading of tumor cells in the kidney. The reaction–
diffusion model [3] was first proposed in chemistry, and widely
used in biology, geology, physics, and ecology. The model is
defined as follows:

∂c

∂t
= −div(−D∇c) + S(c, t) − T (c, t) (1)

where c represents the tumor cell density, D is the diffusion
coefficient of tumor cells, S(c, t) represents the source fac-
tor function that describes the proliferation of tumor cells, and
T (c, t) is used to model the efficacy of the tumor treatment.

Since our purpose is to predict the tumor growth before treat-
ment, the treatment term T (c, t) is omitted. The source factor
S(c, t) can be modeled using Gompertz law [3], which is defined
as follows:

S(c, t) = ρc ln(
Cmax

c
) (2)

where ρ is the proliferation rate of tumor cells, Cmax is the
maximum tumor cell carrying capacity of the kidney tissue.
Similar with [3], Cmax is set to 3.5 × 104 cells mm−3 .

Combining (2) and (1) and omitting T (c, t), we can get

∂c

∂t
= −div(−D∇c) + ρc ln

(
Cmax

c

)
. (3)

Based on [8] and [14], in this letter, the diffusion in the renal
cortex and renal pelvis are considered to be isotropic, while that
in renal medulla to be anisotropic. The diffusion properties of
different tissues are listed in Table I. It is important to note that in
the diffusivity matrix Dm of medulla, the diffusion in the radial
direction is faster than other directions. Here, the diffusivity in
the radial direction is set as λ(λ > 1) times than of those in other
directions.

The FEM is used to solve the PDE in the aforementioned
reaction–diffusion model. Based on the Galerkin method [15],
the continuous problem can be converted to a discrete problem
in a subvectorial space of finite dimension. In principle, it is
the equivalent of applying the method of variation to a function
space, by converting the equation to a weak formulation [15].
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The details of implementation of the reaction–diffusion model
by FEM can be found in [15].

E. Tumor Growth Model Parameters Training

In our tumor growth model, Dc , Dm , Dp , and ρ are the
parameters that need to be estimated. The optimal set of tumor
growth parameters for a particular patient is not known; it must
be estimated from the patient’s image. The optimizing of the
tumor model parameters is based on the hypothesis that the
optimal tumor parameters minimize the discrepancies between
the simulated tumor image and the patient tumor image. It is
achieved by solving the following optimization problem:

θ∗ = arg
θ

min E(θ) (4)

where θ = {Dc,Dm ,Dp, ρ}, and E is the objective function.
Many criteria can be used in constructing function E, such as
the overlap accuracy, feature-based similarity, and smoothness
of the registration [18]. Here, we only use the overlap accu-
racy. In this letter, we assumed that the diffusion properties for
the tissues are not changed over the time, while the prolifera-
tion rate ρcould be changed. Suppose ρ1 , ρ2 , . . . , ρn−1 are the
proliferation rates corresponding to time points t1 , t2 , . . . , tn−1 ,
respectively. Then, the parameters need to be estimated become
exactly as: θ = {Dc,Dm ,Dp, ρ1 , ρ2 , . . . , ρn−1}. As mentioned
earlier, the first n studies are used for model parameters training.
The parameters are trained in pair using consecutive study i and
I + 1. Finally, our objective function is defined as follows:

E(θ) =
n−1∑
i=1

w · (1 − TPVF(Ii,θ , Ii+1)) + (1 − w)

× FPVF(Ii,θ , Ii+1) (5)

where Ii+1 is used as the validation tumor image, and Ii,θ

is the predicted tumor image using θ based on image Ii . For
giving parameters θ, we can compute the density based on the
tumor growth model. The threshold method is applied to detect
the tumor. Tracqui et al. [17] suggested an 8000-cell mm−3

threshold of detection for an enhanced CT scan. This value
is also applied in this letter. w is the weight for true positive
volume fraction (TPVF) (in this letter w = 0.5). TPVF indicates
the fraction of the total amount of tumor in the true prediction,
and false positive volume fraction (FPVF) denotes the amount
of tumor falsely identified; more details can be seen in [13].

The optimization of (5) is not a trivial task due to the dis-
continuities in the objective function. However, pattern search
methods are suitable for such problems [22], [23]. They are di-
rectional methods that make use of a finite number of directions
with appropriate descent properties. We apply HOPSPACK [22],
which takes advantage of multithreading and parallel comput-
ing platforms. HOPSPACK comes with an asynchronous pattern
search solver that handles general optimization problems with
linear and nonlinear constraints, and continuous and integer-
valued variables. Due to the complicated form of our objective
function, it is not guaranteed that a global optimum exists. We
set an iteration limit of 200 in the optimization process.

Fig. 2. Segmentation and meshing results for the first study. (a) Original
image, (b) segmented kidney, (c) segmented tissues and one tumor (cortex:
orange; medulla: black; pelvis: green; and tumor: red), and (d) one view of
volumetric mesh (cortex: orange; pelvis: green; tumors: red; pink and blue,
medulla is invisible because it is inside).

F. Tumor Growth Prediction

After getting the optimized parameters, these parameters are
applied to the tumor growth model to compute the predicted
result for time point n + 1 using image at time point n. For
diffusion parameters, as we assume they will not change over the
time, therefore, the optimized results are directly used. However,
for the proliferation rate ρ, it will be changed over the time. Then,
we need to predict the proliferation rate ρ for time point n based
on the previously optimized ρ1 , ρ2 , . . . , ρn−1 . West et al. [20]
shows that, regardless of the different masses and development
times, mammals, birds, fishes, and mollusks, all share a common
exponential tumor growth pattern. In this letter, we also assume
the tumor growth follows this exponential law, which is defined
as follows:

ρ = a ∗ exp(b ∗ t) + c ∗ exp(d ∗ t) (6)

where, a, b, c, and d are the growth coefficients. The curve
fitting based on the nonlinear least-squares method is used for
computing the predicted ρ. The detail can be seen in [21].

III. EXPERIMENTAL RESULTS

We tested the proposed methods on two longitudinal studies
of kidney tumors. The contrast enhanced computed tomography
(CT) images in arterial phase were used. Both studies had seven
time-point images scanned at regular intervals of about half year
over three to four years. Three kidney tumors were monitored
for study 1, and two were monitored for study 2. The CT images
were acquired from GE LightSpeed QX scanner with the slice
spacing vary from 1.00 to 5.00 mm and pixel size = vary from
0.70 × 0.70 to 0.78 × 0.78 mm2 . All images were segmented
manually by an expert to generate the ground truth.

Figs. 2 and 3 show the segmentation results and meshes for
both patients, respectively. A mesh consisting of 7217 nodes
and 40996 tetrahedra was generated for the first study, and 6666
nodes and 37857 tetrahedra for the second study.

As both studies had seven time-point images, the training
of tumor growth model parameters were done on their first
six images. The trained diffusivities and ρ for each tumor are
shown in Table II and Fig. 4, respectively. These values are
consistent with [2] and [14]. The average training time is about
260 min using MATLAB programming running on an Intel
Xeon E5440 workstation with quad cores 8 threads (2.83GHz),
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Fig. 3. Segmentation and meshing results for the second study. (a) Original
image, (b) segmented kidney, (c) segmented tissues and two tumors (cortex:
orange; medulla: black; pelvis: green; and tumors: red and pink), and (d) one
view of volumetric mesh (cortex: orange; pelvis: green; tumors: red and pink).

TABLE II
TRAINED DIFFUSIVITIES FOR EACH TUMOR IN THE TWO STUDIES

Fig. 4. Parameter ρ curve fit by (6) for all five tumors. The fit was based on the
five estimated values, the sixth value (overlap with �) was used for prediction
also shown on the figure.

8 GB of RAM, which is currently done online. In the clinical
application, this time is OK because the treatment planning
or surgery decision is not required to make immediately after
scanning, which is usually made after physicians’ discussions
based on many facts. However, this efficiency will be improved
in the near future by including more training PCs and using C++
programming. The curve fitting based on (8) using nonlinear
least-squares method was applied to these data. The computed
ρ based on curve fit was applied on the sixth image to predict
the tumor and validated with the seventh image. Figs. 5 and 6
show the predicted results for these two studies. We can find
that the predicted results are quite good. As for prediction time,
it is about 60 s.

As for quantitative evaluation, the TPVF and FPVF [13] are
used to show the accuracy of the proposed method, and the
results are also shown in Table III. The average TPVF and FPVF
on all tumors are quite good, 91.4% and 4.0%, respectively. We
also compared the volume difference result by our method with
the Gompertz fit [3] method. In the 1960s, A. K. Laird [16] first
successfully used the Gompertz curve to fit data of growth of
tumors. The same training scheme was used, i.e., the Gompertz
curve fit was based on the first six tumor volumes data, and

Fig. 5. Results of the tumor growth prediction on three slices for the first study.
Top row shows the original images, and the bottom row shows the prediction
results by green overlaid on the original images. Red lines represent the manually
segmented tumor results. Different columns show different tumors.

Fig. 6. Results of the tumor growth prediction on two slices for the second
study. (a) and (c) are the original images. (b) and (d) show the prediction results
by green overlaid on (a) and (c), respectively.

TABLE III
VOLUME DIFFERENCE, TPVF, AND FPVF FOR EACH TUMOR

IN THE TWO STUDIES

Fig. 7. Tumor growth curve fit by Gompertz function for all five tumors. The
fit was based on the first six volume data, and the seventh volume data (overlap
with �) was also shown on the figure.

predicts the tumor volume for the seventh time point. The results
for five tumors were show in Fig. 7 and Table III. Compared to
Gompertz curve fit, our proposed method is more accurate.
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IV. PERSPECTIVES AND FUTURE WORK

In this letter, we adopted a widely used reaction–diffusion
model as the tumor growth model. The proposed method was
tested on two longitudinal studies with seven time points on
five tumors. The preliminary experimental results proved the
feasibility and efficacy of the proposed system. However, the
mass effect was not taken into consideration. This will be done
by coupling with biomechanical model in the near future as
in [3] and [19]. Currently, we did not include the surrounding
tissues as we found that the diffusion of the renal tumor is much
faster in kidney than in the surrounding tissues. However, this
is another important issue that will be investigated in our future
work.
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