
Computer Vision and Image Understanding 117 (2013) 513–524
Contents lists available at SciVerse ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
GC-ASM: Synergistic integration of graph-cut and active shape model strategies
for medical image segmentation q

Xinjian Chen a, Jayaram K. Udupa b,⇑, Abass Alavi c, Drew A. Torigian c

a School of Electronics and Information Engineering, Soochow University, Suzhou 215006, China
b Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
c Hospital of the University of Pennsylvania, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104-6021, United States

a r t i c l e i n f o
Article history:
Received 3 June 2010
Accepted 1 December 2012
Available online 20 December 2012

Keywords:
Object recognition
Image segmentation
Statistical shape models
Graph cut
1077-3142/$ - see front matter Crown Copyright � 2
http://dx.doi.org/10.1016/j.cviu.2012.12.001

q This paper has been recommended for acceptance
⇑ Corresponding author. Address: Department of R

sylvania, 423 Guardian Drive, Philadelphia, PA 19104
(215) 898 9145.

E-mail address: jay@mail.med.upenn.edu (J.K. Udu
a b s t r a c t

Image segmentation methods may be classified into two categories: purely image based and model
based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose
a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM
method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function
is proposed which effectively integrates the ASM shape information into the GC framework. The proposed
method consists of two phases: model building and segmentation. In the model building phase, the ASM
model is built and the parameters of the GC are estimated. The segmentation phase consists of two main
steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed
which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmen-
tation result which also provides the shape information for the GC method. For delineation, an iterative
GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The
proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdom-
inal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of
TPVF > 96%, FPVF < 0.6% can be achieved via GC-ASM for different objects, modalities, and body regions.
(b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far
fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation
step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One dis-
advantage of GC-ASM is its increased computational expense owing to the iterative nature of the
algorithm.

Crown Copyright � 2012 Published by Elsevier Inc. All rights reserved.
1. Introduction

1.1. Background

Automatic image segmentation is a fundamental and challeng-
ing problem in computer vision and medical image analysis. In
spite of several decades of research and many key advances, sev-
eral challenges still remain in this area. The whole segmentation
operation can be thought of as consisting of two related processes:
recognition and delineation. Recognition is the high-level process of
determining roughly the whereabouts of an object of interest and
distinguishing it from other object-like entities in the image. Delin-
eation is the low-level process of determining the precise spatial
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extent of the object in the image. The efficient incorporation of
high-level recognition help with accurate low-level delineation
has remained a challenge in medical image segmentation.

From the consideration of the recognition process and its impli-
cations, it is important to distinguish between two types of activ-
ities in medical image processing – Computer Aided Diagnosis
(CAD), and another, which, for the lack of a widely accepted name,
we will refer to as Computer Aided Visualization and Analysis
(CAVA). In CAD, the focus is on disease diagnosis via images. CAVA,
however, deals with the science underlying computerized methods
of image processing, analysis, and 3D visualization to facilitate new
therapeutic strategies, basic clinical research, education, and train-
ing. In CAD, the goal of recognition (or detection) is to identify/de-
tect an abnormality such as a mass or lesion in the images of a
body region. In CAVA, on the other hand, the goal of recognition
is to identify anatomic organs, not for the purpose of determining
their presence/absence, but for subsequently delineating, quantify-
ing, and visualizing them and their pathological deviations. In CAD,
recognition/detection may be itself a goal, or it may be followed by
ights reserved.
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delineation to study the morphology/architecture of the lesion for
its classification as benign or malignant. In CAVA, thus far, far more
emphasis has been given to delineation than for automatic organ
recognition.

Different schemes have been employed in books and review
papers [1,2] for classifying segmentation methods. The scheme
we have used is motivated by the challenges that currently exist
in segmentation. In this paper, the focus is on delineation, whether
it is for CAVA or CAD, and on recognition from the perspective of
CAVA and not CAD. Recognition for CAVA is usually implemented
with the user providing information interactively, for example, in
the form of seeds, initial boundary, or an initial model placed near
the object. In view of these considerations, our review will focus
mainly on delineation.

1.1.1. Classification of delineation methods
Delineation methods may be globally classified into three

groups: Those that rely entirely on information available only in
the given scene, those that use prior shape models (SMs) for the
object of interest, and a third emerging hybrid group that combines
the strengths of different methods. For brevity, we shall refer to
these groups as purely image based approaches or pI-approaches,
SM-approaches, and hybrid. Starting from the earliest publications
in delineation [3], a majority of the methods investigated during
the 4–5 decades of segmentation research are pI-approaches.
SM- and hybrid approaches are recent and are rightfully attracting
a great deal of attention.

1.1.2. pI-approaches
These methods maybe further classified into two groups –

boundary-based (BpI) and region-based (RpI). Early attempts toward
automating boundary tracing took optimum boundary detection
approaches [4,5]. Their inadequacies led to the active contour
(AC) methods [6–8]. In an attempt to avoid the post-delineation
correction often required by these methods, live wire (LW) user-
steered delineation methods have emerged [9–11]. In these
techniques, recognition by a human operator and delineation by
the computer take place cooperatively, synergistically, and with a
certain degree of continuity in a tightly coupled manner. Another
class of boundary-based delineation techniques called level-set
(LS) methods [12–14] have emerged also for overcoming the inad-
equacies of the deformable boundary methods. They can handle
changing topology, and can deal with local voxel level deforma-
tions. As for region-based approaches, from simple intensity thres-
holding [15] to methods of automatically finding the thresholds
in an optimum fashion have been devised [16,17]. Region growing
methods [18,19] evolved to overcome the drawbacks of threshold-
ing. Clustering or feature space partitioning methods [20] are popu-
lar particularly in brain MR image analysis [21,22]. The commonly
used clustering methods are k-nearest neighbor, c-means, and fuzzy
c-means techniques. Graph-based approaches pose delineation as a
graph problem and present solutions via graph search algorithms.
Two actively pursued classes of methods in this group are graph-
cut (GC) [23–25] and fuzzy connectedness (FC) [26–28]. In Markov
Random Field (MRF), the spatial information in an image can be
encoded statistically through contextual constraints of neighboring
voxels [29,30]. In the watershed (WS) –based methods [31–
33,57,58], the region occupied by an object is considered to be
the set of all those voxels which get flooded under certain condi-
tions. In the so-called Mumford-Shah model [34,35], the idea is to
partition the domain of the given scene optimally into different
object regions by minimizing a functional.

1.1.3. SM approaches
The basic premise of these methods is to first construct a

spatial/geographic statistical model that contains salient shape
information and its expected variations among all manifestations
of the object of interest. Subsequently this model is utilized to
search for a shape in the given scene that agrees with the model.
Methods in this group differ in how the model is represented
and built, if and how scene intensity texture information is incor-
porated statistically into the model, how an initial position of the
model is specified in the scene, how the particular shape is found
in the scene, and how the model is used as a spatial prior in tissue
classification. Prominent in this group are Active Shape and
Appearance Models (ASM, AAM) [36–38], m-Reps [39,40], and
atlas-based methods [41–43]. ASM/AAM methods use ‘‘landmarks’’
to represent shape and principal component analysis to capture
the major modes of variation in shape observed in the training data
sets. m-reps use a medial axis representation to capture shape
information. Atlas-based methods rely on a previously created atlas
that captures in it information about the object label, geometry,
shape, scene intensity properties, and object assembly architecture
defining the relationship among objects. These methods have pro-
ven useful especially in classifying tissues of the brain. The given
image is first elastically matched to the standard template of the
atlas. The prior likelihood from the atlas is then combined with
image intensity to derive a posteriori tissue likelihood.

1.2. Motivation

1.2.1. Hybrid-approaches
The pI-approaches and the SM-approaches each have their own

strengths and weaknesses. The premise of hybrid approaches is
to combine the complementary strengths of the individual meth-
ods to arrive at a more powerful hybrid strategy that can overcome
the weakness of the component methods. The hybrid strategies
investigated in the literature combine methods as follows: (hs1):
two or more BpI-methods or two or more RpI-methods; (hs2):
BpI-methods and RpI-methods; (hs3): BpI-methods with an SM-
method; (hs4):RpI-methods with an SM-method. Combination of
two SM-approaches developed as a hybrid method is not known.
Compared to pI- and SM-approaches, research done on hybrid ap-
proaches is far less advanced and is mainly under strategies (hs1)
[44,45] and (hs2) [46,47]. In (hs1) and (hs2) strategies, we can
advance segmentation to the point where we can, at best, harness
all or most of the information present in the given image for influ-
encing segmentation. In contrast, strategies (hs3) [48,49] and (hs4)
[50,51] allow us, in addition to such information, to bring in infor-
mation about the geography, shape, and relationships of objects.
This latter area, however, is in its early stages, and, we believe,
offers the greatest potential for major advances in segmentation
algorithms. The proposed method falls under this latter category.

In this paper, continuing in the spirit of hybrid strategy (hs4),
we propose a novel synergistic way of combining the pI graph-
cut approach with the model based ASM method to arrive at the
GC-ASM strategy. Some related research works [52–56,59,60,69–
71] in this area are summarized here. Besbes et al. [52] proposed
a discrete MRF based segmentation method which combines shape
priors and regional statistics. However, this method does not per-
form segmentation at the pixel level. Freedman and Zhang [53]
incorporated the shape template into the graph-cut formulation
as a distance function. However, this method relies crucially on
having user input. Based on the latter, Ayvaci and Freedman [54]
proposed a joint-registration segmentation method which re-
moves the user interaction requirement and resolves the problem
of template registration. However, this method requires proper
registration of the shape template for an accurate segmentation.
Kumar et al. [55] used a Markov Random Field representation
where the latent shape model variables are integrated via expecta-
tion maximization. While shape information is utilized in a princi-
pled Bayesian manner, this approach is computationally intensive
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requiring separate energy minimization. Malcolm et al. [56]
impose the shape prior model on the terminal edges and perform
graph cuts iteratively starting with an initial contour. Their method
constructs a statistical shape space using kernel principal compo-
nent analysis. This method also relies on user input. Kohli et al.
[59] present an algorithm for performing simultaneous segmenta-
tion and 3D pose estimation of a human body from multiple views.
This method optimizes a cost function based on a Conditional
Random Field that combines shape prior information and pose of
the subject via dynamic graph cuts. Most closely related to our work,
Vu and Manjunath [60] propose a shape prior segmentation method
using graph cuts capable of segmenting multiple objects. The shape
prior energy is based on a shape distance popular with level set
approaches. However, the shape used is a simple fixed shape.

In contrast to these methods, the strategy proposed in this
paper is an automatic multi-object segmentation method,
although model building requires user help. And most importantly,
different from all the above mentioned shape prior-integrated GC
methods, this technique does not need to do shape registration
because of the proposed automatic initialization step. The pro-
posed GC-ASM process effectively combines the rich statistical
shape information embodied in ASM with the energy minimization
capabilities of the GC method for delineation. A multi-object GC
cost function is proposed which effectively integrates the ASM
shape information into the GC paradigm. The proposed method
consists of two phases: model building and segmentation. In the
model building phase, the ASM model is built and the parameters
of GC are trained. The segmentation phase consists of two main
steps: initialization (or recognition) and delineation. In the initial-
ization step, the model pose (translation, orientation, and scale) is
estimated automatically yielding also a rough segmentation result.
In the delineation step, an iterative algorithm performs finer delin-
eation based on the initialization result, alternating between image
segmentation via GC and the update of the ASM shape model. The
proposed method was tested on three 2D medical image data sets:
abdominal CT, chest CT, and foot MRI. In these data sets, the
acquired images are naturally roughly aligned.

To summarize, the main contributions of this paper are as
follows: (1) A multi-object initialization/recognition method which
effectively combines the GC and ASM methods. (2) A novel shape
integrated iterative GC-ASM delineation method, which alternates
between object delineation via GC and updating the ASM shape
model. (3) A novel strategy for assessing the effectiveness of object
recognition and its influence on objet delineation.

The paper is organized as follows. In Section II, the complete
methodology of GC-ASM is described. In Section III, a detailed eval-
uation of this method in terms of its accuracy and efficiency in both
recognition and delineation by utilizing three different data sets is
presented. In Section IV, we summarize our conclusions. A preli-
minary version of this paper appeared in the conference proceed-
ings of the SPIE 2009 Medical Imaging Symposium [61].
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Fig. 1. A flowchart of the proposed method.
2. Graph cut with active shape models

2.1. Overview of approach

In this section, an overview of the GC-ASM approach is pre-
sented. To test the feasibility and the effectiveness of the ideas
underlying GC-ASM, this paper focuses on the segmentation prob-
lem in 2D images. Some sample results on 3D images are presented
at the end.

Let O1, O2,. . ., Om be the physical objects of interest, in a given
body region B, such as the human liver, lungs, and heart, in the
thoracic region. For segmenting the boundaries of these objects
in an image of a particular manifestation of them, ASM captures
the statistical variations in the boundaries of these objects within
the objects’ family via a statistical shape model M associated with
each object. In our case, M constitutes the model of an assembly of
m P 1 objects. GC-ASM determines a cost structure K associated
with M (and, hence, the set of objects represented by M) via the
principles of optimal cut underlying the graph cut method. As
per this cost structure, every shape instance x of the multiple ob-
jects in B generated by M is assigned a total GC cost K(x) in a given
image. This cost is determined from the graph cut method. GC-ASM
seeks that collection of object boundaries in the given image of B,
which satisfies the shape constraints of M and for which the cost
K(x) in the given image is the smallest possible. The main steps
involved in GC-ASM are listed below, and a flowchart of the pro-
posed method is given in Fig. 1. Each step is described in detail
in each subsection of Section 2.
2.2. Procedure GC-ASM

2.2.1. Model building phase

T1. Specify landmarks on boundaries of objects O1,. . ., Om in the
training images provided for body region B.

T2. Construct a shape model M for the objects in B from the
landmarks and training images.

T3. Estimate parameters for GC delineation.

2.2.2. Segmentation phase

S1. Initialization/recognition: Determine, in the given image I of
B, the pose at which M should be set in I so that the model
boundaries are close to the real object boundaries in I. Let
the shape instance of the multiple object assembly corre-
sponding to the recognized site be x.

S2. Delineation: For the shape instance x of the multiple object
assembly, determine the best oriented boundaries in I as
per the GC method.

S3. If the convergence criterion is satisfied, output the best ori-
ented boundaries found in S2 and stop. Otherwise, subject x
to the constraints of model M and go to Step S2.

In this procedure, T1–T3 constitute training or model creation
steps, and S1–S3 represent initialization/recognition and delinea-
tion steps. These steps are described in detail in Sub-sections
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2.3.1–Sections 2.4.3. But first, the relevant GC principles are de-
scribed in Section 2.2.

2.3. Multi-object shape integrated graph cut

GC segmentation can be formulated as an energy minimization
problem such that for a set of pixels P and a set of labels L, the goal
is to find a labeling f: P ? L that minimizes the energy function E(f).

Eðf Þ ¼
X
p2P

RpðfpÞ þ
X

p2P; q2Np

Bp;qðfp; fqÞ ð1Þ

where Np is the set of pixels in the neighborhood of p, Rp(fp) is the
cost of assigning label fp e L to p, and Bp,q(fp, fq) is the cost of assign-
ing labels fp, fq e L to p and q. In two-class labeling, L = {0,1}, the
problem can be solved efficiently with graph cuts in polynomial
time when Bp, q is a submodular function, i.e., Bp,q(0,0) + Bp,q(1,1) -
6 Bp,q(0,1) + Bp,q(1,0) [62]. However, for the general multi-object
segmentation problem, L = {0,1,. . .,k}, k P 2, it is known to be
NP-hard [63,75].

2.3.1. Shape integrated energy function
In our framework, the unary cost Rp(fp) is the sum of a data

penalty Dp(fp) and a shape prior Sp(fp) term. The data term is
defined based on image intensity and can be considered as a log
likelihood of the image intensity for object [25,77,78]. The shape
prior term is independent of image information, and the boundary
term is based on the gradient of the image intensity [25].

The proposed shape integrated energy function is defined as
follows:

E ¼
X
p2P

½a � DpðfpÞ þ b � SpðxOÞ� þ
X

p2P; q2Np

c � Bp;qðfp; fqÞ ð2Þ

where a, b, c are the weights for the data term, shape term Sp, and
boundary term, respectively, satisfying a + b + c = 1. These compo-
nents are defined as follows:

DpðfpÞ ¼
� ln PrðIpjOÞ; if f p ¼ object label
� ln PrðIpjBÞ; if f p ¼ object label

(
ð3Þ

Bp;qðfp; fqÞ ¼ exp �ðIp � IqÞ2

2r2

 !
� 1
dðp; qÞ � dðfp; fqÞ ð4Þ

and

dðfp; fqÞ ¼
1; if f p–fq

0; otherwise

�

where Ip is the intensity of pixel p, object label is the label of the ob-
ject (foreground). Pr(Ip|O) and Pr(Ip|B) are the probability of inten-
sity of pixel p belonging to object and background intensity,
respectively, which are estimated from object and background
intensity histograms during the training phase. d(p, q) is the Euclid-
ian distance between pixels p and q, and r is the standard deviation
of the intensity differences of neighboring voxels along the bound-
ary. The shape prior term we have employed is similar to the one
proposed by Kohli et al. [59].

SpðxOÞ ¼ 1� exp � dðp; xOÞ
rO

� �
ð5Þ

where dðp; xOÞ is the distance from pixel p to the set of pixels which
constitute the interior of the current shape xo of O. (Note that if p is
in the interior of xo, then d(p, xo) = 0.) rO is the radius of a circle that
just encloses xo. Any one of the linear time distance transform
methods [64,72–74] may be used for computing this distance.
2.3.2. Minimizing E with graph cuts
Let G be a weighted graph (V, A), where V is a set of nodes, and A

is a set of weighted arcs. The multi-way cut problem aims at
finding the cut C with the minimal cost |C|, expressed as the sum
of weights of edges in the cut. One way of minimizing GC energy
is to do iterative binary segmentation based on two way graph
cut. However, extracting multiple objects simultaneously would
be more robust, convenient, and faster compared to the iterative
binary approach [25]. In our implementation, we segment the
multiple objects by using the a-expansion method [24].

The graph is designed as follows. We take V ¼ P [ L, i.e., V con-
tains all the pixel nodes and multiple terminals corresponding to
the labels in L which represent objects of interest plus the back-
ground. A ¼ AN [ AT , where AN is the n-links which connect pixels
p and q (p 2 P; q 2 Np) and with a weight of wpq. AT is the set of
t-links which connect each pixel p in P and terminals ‘ 2 L and with
a weight of wp‘. The desired graph with cut cost |C| equaling E(f) is
constructed using the following weight assignments:

wpq ¼ c � Bp;q ð6Þ

wp‘ ¼ H� ða � Dpð‘Þ þ b � Spð‘ÞÞ ð7Þ

where H is a constant that is large enough to make the weights wp‘

positive.

2.4. Model building

2.4.1. T1: Specifying landmarks
One way to describe a particular instance of the shape of an ob-

ject O is by locating a finite number of points on its boundary, re-
ferred to as landmarks. A mathematical representation of an n-
point shape in a d-dimensional space may be obtained by concat-
enating each dimension into a d � n component vector. In this pa-
per, only 2D shapes are considered, hence d = 2. Suppose each
object Oi considered for inclusion in the model has li landmarks,
1 6 i 6m. Then the vector representation for planar shapes would
be:

x ¼ ðxO1
1 ; yO1

1 ; xO1
2 ; yO1

2 ; � � � ; xO1
l1
; yO1

l1
; xO2

1 ; yO2
1 ; � � � ; xO2

l2
; yO2

l2
; � � � xOm

lm
; yOm

lm
Þ:
ð8Þ

In many ASM studies, a manual procedure is used to label the
landmarks in a training set, although automatic methods are also
available for this purpose. That is, for each image of the training
set, operators locate the shape visually, and then identify signifi-
cant landmarks on that shape. It is important that the landmarks
are accurately located and that there is an exact correspondence
among landmark labels in different instances of the training
shapes. For our approach, any such method will work, although
we have used the manual method in producing all presented
results.

2.4.2. T2: Building the model M
To obtain a true shape representation of an object family Oi,

location, scale, and rotation effects within the family need to be
filtered out. This is usually done by aligning the shapes within Oi

(in the training set) to each other by changing the pose parameters
(scale, rotation, and translation) [36]. For multiple objects, the
object assemblies are aligned. The model M is then constructed
following the ASM procedure [36] considering the multiple objects.

2.4.3. T3: Estimating GC parameters
During the training stage, the histograms of intensity for each

object are estimated from the training images. Based on this,
PrðIpjOÞ and PrðIpjBÞ can be computed. As for parameters a, b and
c in Eqn. (1), since aþ bþ c ¼ 1, we estimate only a and b by
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optimization of the accuracy of segmentation as a function of a and
b and set c = 1-a-b. In our implementation, we use the simple but
effective gradient decent method [65]. Suppose Accu ða; bÞ repre-
sents the algorithm’s accuracy (here we use the true positive vol-
ume fraction [66]) on the training data set with parameters a, b,
a and b are initialized to 0.35 each, and Accu ða; bÞ is optimized
over the training data set to determine the best a and b.

2.5. Segmentation

The segmentation process consists of two main steps: initializa-
tion or object recognition and delineation. The initialization step
aims at estimating the pose of the model, and obtaining a rough
segmentation result. In the second step, an iterative GC-ASM delin-
eation algorithm derives a finer delineation based on the initializa-
tion result. In both these steps, the shape information is integrated
into the GC framework.

2.5.1. S1: Initialization/recognition
The purpose of this step is to recognize the desired objects in I;

that is, to find a shape instance x of M which is sufficiently close to
the boundaries of the objects in I that we want to segment. x is sub-
sequently modified in Steps S2 and S3 to best fit the image infor-
mation in I from the consideration of both GC and ASM.

The automatic initialization method proposed here is an essen-
tial underpinning of the GC-ASM method. It relies on the fact that,
corresponding to a pose of a shape instance x of M that is close to
the pose of the correct boundary of the objects Oi (1 6 i 6m) in I,
the GC cost (the sum of the minimum cut cost of all objects) is
likely to be sharply smaller than the cost found at other poses in
I. Suppose p denotes the pose vector for the object assembly, with
a location component x and y, scale component s, and orientation
component h. Our goal is to find the best pose in I for the model
M. Our experiments indicate that, the small variations in orienta-
tion observed in clinical images can be automatically handled by
the GC-ASM algorithms and thus h can be ignored. Thus p becomes
3-dimensional (x,y, s)t. Let K(M, I,p) be the GC minimum cut cost
summed over all objects achieved at p in I using model M. Then
the recognition task is to find:

p� ¼ argminp½KðM; I;pÞ� ð9Þ

The algorithm for automatic recognition runs as follows:
Algorithm for Automatic Initialization

S1.1. Initialize the set of potential pose vectors p for M over which
the optimum needs to be found.

S1.2. For each potential pose vector p in the set, do steps S1.3 and
S1.4.

S1.3. ASM searching. Put model M at p relative to I, then deform it
as per the standard ASM method.

S1.4. GC segmentation. Based on the cost function E (Eq. (1)), per-
form GC segmentation and find the minimum cut cost.

S1.5. Select the deformed ASM shape and GC result corresponding
to the lowest cut cost over all p as the automatic recognition
result for the subsequent steps.

The set of potential pose vectors is determined by discretizing
the three-dimensional search space of (x,y,s)t. If multiple objects
are included, the search space becomes considerably smaller, and
recognition becomes vastly more efficient because of the con-
straints brought on by the multiple objects. For example, any pose
vector for which the objects in M extend significantly beyond the
body region in I need not be included in the potential pose vector
set. This underscores the importance of the actual distribution of
the objects that are considered to be included in M. It is clear that
initialization efficiency and accuracy both depend on a number of
factors, such as the size of the image I, the number of objects, the
size of objects, and the objects’ distribution. These dependencies
and the actual size of the search space for different body regions
are demonstrated by our results. Since the search space dealt with
in the initialization method is small, we find the optimal p� in Eq.
(6) by exhaustive search, which also avoids settling at local
minima.

2.5.2. S2: Delineation
This step assumes that the recognized (initialized) shape in-

stance xp of the objects in M derived from Step S1 is sufficiently
close to the actual boundaries of Oi (1 6 i 6m) in I. It then deter-
mines what the new position of the landmarks of the objects rep-
resented in xp should be such that the minimum graph cut cost is
the smallest possible. This is accomplished through an iterative
GC-ASM algorithm, called IGC-ASM, presented below.

Algorithm IGC-ASM

Input: Initialized shape assembly xp.
Output: Resulting shape xo and the associated object
boundaries.

begin
while number of iterations < nIteration do

1. Perform GC segmentation based on shape assembly xp;
2. Compute the new position of the landmarks by moving each

landmark in xp to the point closest on the GC boundary of the
corresponding object; call the resulting shape assembly xnew;

3. If no landmarks moved, then set xnew as xo and go to 4;

otherwise, subject xnew to the constraints of model M, and call
the result xp.

endwhile
Perform one final GC segmentation based on xo, and compute

and output the associated object boundaries.
end
In our implementation, nIteration is set to 6. Also we limit the

number of pixel units by which landmarks can move within any
iteration to 6. A simple morphological operation (dilation and ero-
sion) is applied to the result if there are holes in the segmentation
result. In our construction of the ASM model, the shape truncation
level was set as 95% (two standard deviations from the mean). Dur-
ing the searching stage, if any shape parameters go beyond two
standard deviations from the mean, then they are constrained by
applying ellipsoidal constraints in the shape parameter space.

2.5.3. S3: Subjecting to model constraints
The convergence criterion used here is a measure of the dis-

tance between two shapes encountered in two consecutive execu-
tions of Step S2. This measure is simply the maximum of the
distance between corresponding landmarks in the two shapes
among all objects. If this distance is greater than 0.5 pixel unit,
the optimum shape found in Step S2 is subjected to the constraints
of model M. Then the iterative process is continued by going back
to Step S2. Otherwise, the GC-ASM process is considered to have
converged and it stops with an output of the optimum shape and
the optimum oriented boundaries found in Step S2.
3. Experimental results

In this section, we demonstrate both qualitatively, through im-
age display, and quantitatively, through evaluation experiments,
the extent of effectiveness of the GC-ASM method. Three clinical
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image data sets, which include abdominal and chest CT, and foot
MRI, have been considered. We describe some new strategies for
evaluating the recognition method. For delineation evaluation,
we use the framework of [66] and focus on the analysis of accuracy
and efficiency of GC-ASM. We consider manual segmentation per-
formed in these different data sets to constitute a surrogate of true
segmentation for assessing the accuracy of the methods, and use
the true positive, false positive, and false negative volume fractions
(TPVF, FPVF, and FNVF) from that reference. We compare GC-ASM
with ASM, a recently developed multi object oriented ASM method
(MOASM) [48,67] and Malcolm et al.’s method [56], which incorpo-
rated a shape prior learned from training examples via kernel prin-
cipal component analysis into the GC method, denoted by GCKPCA
for further reference.

3.1. Image data sets

The image data sets and objects used in the experiments are de-
scribed in Table 1. The CT sets constitute slices selected from 3D
studies on a Siemens Sensation 16 CT scanner with a slice spacing
of 5 mm, image size of 512 � 512, and pixel size of
0.78 � 0.78 mm2. The MRI set consists of slices selected from 3D
studies on a GE 1.5T MRI scanner with a slice spacing of 1.3 mm,
image size of 256 � 256, and pixel size of 0.55 � 0.55 mm2. In each
set, 40 slices selected from full 3D images, acquired from fifteen
different subjects are used. These slices are approximately at the
same location in the body, so that, for each object, the 40 2D
images in each set can be considered to represent images of a fam-
ily of objects of the same shape. Two to three slices are taken on
average from the same subject’s data, either from the same 3D im-
age or from different 3D images. Among them, 25 images are se-
lected as training images, and the rest are used as testing images.
In this selection, we have made sure that slices from the same sub-
ject do not appear in both the training and test sets. We considered
four objects in each data set as listed in Table 1. The trained opti-
mal GC parameters ða; b; cÞ for these three data sets are
(0.25,0.5,0.25), (0.25,0.45,0.30) and (0.27,0.53,0.20), respectively.

3.2. Qualitative analysis

A subjective inspection revealed that, in all experiments and in
all data, the GC-ASM results matched the perceived boundary very
well. Some examples are displayed for each of the three data sets in
Figs. 2–4. Automatic initialization based on location and scale
search worked well in all cases in the sense that initialized shapes
were found close to the true boundary. Our experiments indicate
that, because of the orientedness nature of the GC-ASM approach,
the small variations in orientation observed in clinical images can
be automatically handled, and therefore, recognition based on
searching in the space spanned by p considering only x, y, and s
was effective. In Figs. 2–4, (b) shows the original image on which
the mean shape of the model is overlaid, which is the starting point
for the recognition algorithm; (c) shows the recognized (initial-
ized) shapes output by Step S1, which are the initial shapes input
to Step S2 of the GC-ASM method; and (d) displays the final seg-
mentation results. In these figures, we display in (e and f) and (g)
also the delineation results for ASM, MOASM and GCKPCA. For
ASM and GCKPCA, the recognition result of GC-ASM was used to
Table 1
Description of the image data sets used in the three segmentation experiments.

Data set Objects

Abdominal CT Left pelvic bone, vertebra, right pelvic bone, and skin boundary
Chest CT Right lung, left lung, heart, and skin boundary
Foot MRI Talus, calcaneus, tibia, and skin boundary
provide the initialization. For MOASM, its own optimal recognition
method [48,67] was used for initialization. The same number of
landmarks has been used in the models employed for all methods
in the results presented in Figs. 2–4.
3.3. Quantitative analysis

It is important to assess the effectiveness of recognition sepa-
rately from the overall delineation result since recognition and
delineation are interdependent. Therefore, several types of tests
were conducted to evaluate the two aspects separately.
3.3.1. Recognition
There are two aspects to the evaluation of the recognition meth-

od. The first has to do with the mechanism of searching for the
optimum (see Eq. 6) in the pose space of p, and the second relates
to how close to the true pose the recognized model pose comes.

For the reasons already described, we do an explicit search for
the optimum pose by discretizing the space of p. So the first aspect
has to do with the step size for x, y, and s for discretization of the
pose space and its influence on the accuracy of recognition. In
Figs. 5–7, we demonstrate the effect of step size on the ability of
the method to correctly position the model so that the delineation
becomes accurate. This is expressed in terms of how well the delin-
eated objects match the true delineations (TPVF). As we can see,
the recognition strategy is not very sensitive to the step size used
in any of x, y, and s. TPVF actually depends on all these parameters
x, y, and s. What is shown in Figs. 5–7 is a cross section of this var-
iation passing through the optimum point; for example, while
showing the variation with respect to x, the parameters y and s
are fixed at their optimum values.

Coming now to the second aspect, we determine how close the
optimum pose found comes to the true pose in terms of the con-
cept of ‘‘robust region’’. Robust region (RR) is the set of all pose vec-
tors p such that when the recognized pose is any pose within RR,
the resulting delineation accuracy is acceptably ‘‘high’’ (say, with
FPVF and FNVF < 3%). The larger RR is, the more robust the recog-
nition method is, and hence more likely the delineation algorithm’s
high accuracy. Fig. 8 gives an illustration of RR for the GC-ASM
method for an image from the chest CT data set. The white point
represents the geometric center of the actually recognized model
assembly. The red region is a cross section of the 3D robust region,
considering only the location components of p. In this case, since
the white point has fallen in RR, it implies high delineation accu-
racy. The cross sections of RR are shown for three different scale
values s = 0.79, s = 1.21, s = 1, the first two representing the ex-
treme scale values for RR, implying that the size of RR is quite large
in the s dimension. Although we used the GC-ASM’s recognition re-
sults for obtaining ASM results (as well as for GCKPCA), we can de-
fine RR for the ASM and GCKPCA methods also for assessing their
sensitivity to initialization. Table 2 lists the robust region size for
ASM, MOASM, GCKPCA and GC-ASM. We may conclude from Ta-
ble 2 that MOASM, GCKPCA [56] and GC-ASM perform similarly
in object recognition and ASM’s RRs in these data sets are empty
sets. Note that the original GCKPCA method [56] employed human
interaction for recognition and GCKPCA has its own optimal recog-
nition strategy. Therefore, the GCKPCA results actually attest to the
Image domain No. of images Landmarks used for each object (total)

512 � 512 40 10,12,10,12 (44)
512 � 512 40 10,9,10,12 (41)
256 � 256 40 7,14,15,11 (47)



Fig. 2. One example from the abdominal CT data set: the original image and its recognition and delineation results. (a) Original Image; (b) default initial model pose; (c)
automatic recognition result by GC-ASM; (d) delineation result by GC-ASM; (e) delineation result by ASM; (f) delineation result by MOASM; (g) delineation result by GCKPCA
[56].

Fig. 3. One example from the chest CT data set: the original image and its recognition and delineation results. (a) Original image; (b) default initial model pose; (c) automatic
recognition result by GC-ASM; (d) delineation result by GC-ASM; (e) delineation result by ASM; (f) delineation result by MOASM; (g) delineation result by GCKPCA [56].
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ability of GC-ASM in automatic object recognition, in addition to
asserting GCKPCA’s delineation capability.

3.3.2. Delineation
For the evaluation of delineation, TPVF, FPVF and distance to

‘‘true boundary’’ (Dist2 TB) are used as the performance indices,
and the proposed method is compared with all three methods.
TPVF of a method indicates the fraction of the total amount of tis-
sue in the true delineation that is captured also by the method.
FPVF denotes the amount of tissue falsely identified by the method.
Dist2 TB is defined as the average distance from the delineated
boundary to the boundary associated with true delineation.
MOASM [67] is a hybrid method involving optimization. Its optimi-
zation is based on a three-level dynamic programming algorithm,
wherein, the first level is at the pixel level which aims to find opti-
mal oriented boundary segments between successive landmarks,



Fig. 4. One example from the foot MRI data set: the original image and its recognition and delineation results. (a) Original Image; (b) default initial model pose; (c) automatic
recognition result by GC-ASM; (d) Delineation result by GC-ASM; (e) Delineation result by ASM; (f) delineation result by MOASM; (g) delineation result by GCKPCA [56].
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Fig. 5. The dependence of recognition accuracy on x translation step size (tested on
chest CT data set).
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Fig. 6. The dependence of recognition accuracy on y translation step size (tested on
chest CT data set).
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Fig. 7. The dependence of recognition accuracy on s step size (tested on chest CT
data set).
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the second level is at landmark level which aims to find optimal
location for the landmarks, and the third level is at the object level
which aims to find optimal arrangement of object boundaries over
all objects. In GCKPCA [56], a statistical shape space using kernel
principal component analysis is constructed based on the set of
training shapes. The shape prior model is added into the data term
and graph cut is performed iteratively starting with an initial con-
tour. At each iteration, the pre-image of the previous labeling in
this shape space is used as the prior probability map, and the neg-
ative log of this pre-image is assigned to the terminal weights. In
our implementation, we set r = 20, k = 1, l = 0.4 as suggested in
[56]; and the initialization result of our method was used as the
initial contour. The objects were segmented one by one.

Table 3 lists the mean and standard deviation values of TPVF,
FPVF, and Dist2TB achieved on the three data sets by all four meth-
ods. We note that GC-ASM produces considerably more accurate
segmentations than the basic ASM method, and its accuracy is
comparable to that of MOASM and GCKPCA [56]. Improved



Fig. 8. Illustration of robust region RR for an image from the chest CT data set for (a) s = 0.79; (b) s = 1.21; (c) s = 1.00. The white point is the geometric center of the actually
recognized shape assembly. In this example, the recognition is perfect. The red region is an s-cross section of the 3D robust region RR. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Robust region comparison for ASM, MOASM [67], GCKPCA [56], and GC-ASM.

Data Set ASM MOASM GCKPCA GC-ASM

Abdominal CT NULL 21 pixels � 23 pixels � 0.18 23 pixels � 25 pixels � 0.20 23 pixels � 24 pixels � 0.19
Chest CT NULL 22 pixels � 24 pixels � 0.2 26 pixels � 25 pixels � 0.22 25 pixels � 26 pixels � 0.21
Foot MRI NULL 10 pixels � 11 pixels � 0.15 10 pixels � 12 pixels � 0.15 9 pixels � 11 pixels � 0.15

Table 3
Mean and standard deviation of TPVF, FPVF and Dist2 TB for ASM [36], MOASM [67], GCKPCA [56] and GC-ASM over all objects.

Data Set TPVF (%) FPVF (%) Dist2 TB (pixels)

Abdom-inal CT Chest CT Foot MRI Abdom-inal CT Chest CT Foot MRI Abdom-inal CT Chest CT Foot MRI

ASM 87.09 ± 1.23 89.03 ± 1.00 80.62 ± 1.46 1.26 ± 0.95 1.12 ± 0.50 0.72 ± 0.31 5.4 ± 3.6 5.8 ± 4.7 8.3 ± 6.4
MOASM 97.32 ± 1.13 98.32 ± 0.22 96.83 ± 0.31 0.13 ± 0.01 0.17 ± 0.01 0.26 ± 0.02 2.6 ± 1.4 2.4 ± 1.7 2.3 ± 2.1
GCKPCA 97.55 ± 0.35 98.62 ± 0.09 96.72 ± 0.12 0.25 ± 0.05 0.19 ± 0.03 0.55 ± 0.05 2.6 ± 1.9 2.5 ± 1.7 2.5 ± 2.3
GC-ASM 97.92 ± 0.21 98.76 ± 0.06 96.61 ± 0.08 0.45 ± 0.07 0.19 ± 0.02 0.61 ± 0.09 2.4 ± 2.1 2.5 ± 1.6 2.6 ± 2.5

Table 4
Mean operator time T0 and computational time Tc (in s) in all experiments for ASM, MOASM, GCKPCA and GC-ASM. The number of landmarks used is indicated by n.

Data set T0 Tc

ASM MOASM GC-ASM ASM MOASM GCKPCA GC-ASM

Abdominal CT 160 (n = 132) 60 (n = 44) 60 (n = 44) 25 30 86 27
Chest CT 130 (n = 123) 55 (n = 41) 55 (n = 41) 23 28 82 25
Foot MRI 170 (n = 141) 65 (n = 47) 65 (n = 47) 18 20 62 19
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accuracy of OASM and MOASM over ASM has already been ob-
served [48,67]. In all experiments, a larger number of landmarks
have been used in ASM than in GC-ASM and MOASM, which is
three times the number of landmarks used in GC-ASM and MOASM
(see Table 4). If the same number were used in ASM as in the
MOASM and GC-ASM methods, the accuracy would deteriorate
considerably, as demonstrated in [48,67].

All methods have been implemented on an Intel Pentium IV PC
with a 3.4 GHZ CPU using Matlab programming. In determining the
efficiency of a segmentation method, two aspects should be con-
sidered - the computation time (Tc) and the human operator time
(To). The mean Tc and To per data set estimated over the three data
sets for each experiment are listed in Table 4. To measured here is
the operator time required in the training step. Table 4 shows that
the operator time (training) required in GC-ASM (and MOASM) is
less than that of ASM since far fewer landmarks are needed in
the former. The computation time required in GC-ASM is a little
more than that of ASM because of the iterative nature of the
IGC-ASM algorithm. The computation time for GCKPCA [56] is long-
er than for GC-ASM. This is due to the fact that for multi-object seg-
mentation, Malcolm’s method cannot segment all objects
simultaneously,

A multivariate analysis of variance (MANOVA) test [76] was ap-
plied to statistically compare GC-ASM with ASM based on all six
efficacy measures: RR size, TPVF, FPVF, Dist2 TB, To, and Tc. The
MANOVA test of the 15 metric values in each data set with a p-va-
lue p < 0.05 indicates that the two methods produce different accu-
racy and efficiency in the overall level. Subsequently, paired t-tests
conducted with a p < 0.05 indicate that the GC-ASM method pro-
duces better accuracy (RR size, TPVF, FPVF and Dist2 TB), and effi-
ciency on operator time (To) than the basic ASM method, but ASM
achieves better efficiency on computation time (Tc) than the GC-
ASM method. Similar tests conducted in comparing GC-ASM with
MOASM indicate that significant differences could not be discerned
(p > 0.35) between the two methods on any of the factors. Similar
tests also conducted in comparing GC-ASM with GCKPCA [56]



Fig. 9. The variation of energy of the proposed method on three data sets as a function of iteration number: (a) abdominal data set; (b) chest data set; and (c) foot MRI data
set. There are 15 testing cases in each data set, One line represents one case. The convergence behavior on all 45 data sets is shown.

Fig. 10. Three different views of 3D delineation results from two different patient abdominal CT data sets. Objects shown are the liver, spleen, and the two kidneys.
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indicate that significant differences could not be discerned
(p > 0.39) between the two methods in terms of accuracy (RR size,
TPVF, FPVF and Dist2 TB). However, GC-ASM achieves better effi-
ciency on computation time (Tc) than GCKPCA (p < 0.05).
3.3.3. Analysis of the Convergence of GC-ASM
Many pI, SM, and hybrid methods in segmentation are iterative

in nature and are based on searching and optimization. For most
such methods, it is difficult to carry out a theoretical analysis of
convergence and/or to guarantee the achievement of a globally
optimal solution. This is mainly due to the inability to precisely
model and predict the subject-to-subject variations in factors such
as object size, shape, layout, intensity appearance, and object rela-
tionships. Obviously a theoretical guarantee of the convergence of
an algorithm is desirable since this would promise a stable behav-
ior for the method within the space analyzed by the theory. How-
ever, any optimum, local or global, does not necessarily assure the
best segmentation result. In most situations, including ours, we
have only an empirical recourse. Therefore, we conducted the
experiments to study the convergence behavior of the proposed
method on all three data sets. The results, presented in Fig. 9, show
that the proposed GC-ASM algorithm generally converged within
four iterations on all test images in all three data sets. The optimi-
zation converged mostly after a couple of iterations, which may be
due to the fact that the images used in this paper are naturally
roughly aligned.
4. Concluding remarks

In this paper, we have proposed a synergistic combination of
the image-based GC and model-based ASM methods. The proposed
cost function effectively integrates the ASM shape information into
the GC paradigm. The automatic object recognition strategy em-
ployed by GC-ASM is based on the minimum total GC cut cost,
which utilizes combined prior shape and specific image informa-
tion. The proposed method was evaluated on routine clinical chest
CT, abdominal CT, and foot MRI data sets. The evaluated results
indicate the following: (1) An overall delineation accuracy of
TPVF > 96%, FPVF < 0.6% can be achieved via the GC-ASM method
for different objects, modalities, and body regions. (2) GC-ASM im-
proves over ASM in its accuracy and precision to search region. (3)
It requires far fewer landmarks (about 1/3) than ASM. (4) GC-ASM
achieves full automation compared to the graph cut method. The
latter requires seed specification which is commonly done by man-
ual interaction. (5) One disadvantage of GC-ASM is its increased
computational expense owing to the iterative nature of the IGC-
ASM algorithm.

The results demonstrate that it is feasible to explicitly bring
prior statistical shape information into the GC framework. This
makes object recognition in GC automatic and improves delinea-
tion over ASM while maintaining or improving GC’s delineation
performance, especially in regions in the image where boundary
information is missing. It means that a good delineation can help
in recognition and a perfect recognition can make delineation most
accurate. This is the spirit of the synergy established between ASM
and GC by GC-ASM. The proposed method was also compared to
two other hybrid methods, MOASM [67] and GCKPCA [56]. The
comparison shows that GC-ASM and MOASM have comparable
performances while GC-ASM improves over GCKPCA mainly in
computational efficiency.

We chose a larger number of landmarks for ASM to try to bring
its accuracy on par with that of GC-ASM. If we reduce these num-
bers from those indicated in Table 4, ASM’s performance will
deteriorate.
In this paper, we utilized multiple objects in the model. This can
considerably facilitate recognition and in turn delineation accuracy
compared to using single objects in the. This brings up an issue,
specific to the GC approach, of the unavailability of a globally opti-
mal min cut solution for simultaneously segmenting multiple ob-
jects. For multiple objects, the a-expansion method [24] can find
segmentations within a known factor of the global optimum. How-
ever, it is worthy to note that this factor can be huge.

The proposed method can be easily extended to 3D segmenta-
tion once a 3D model creation facility is available. Fig. 10 shows
segmentation results by GC-ASM for liver, spleen and the two kid-
neys based on the 3D model created from abdominal CT image data
in the work of [68]. On an Intel Pentium IV PC with a 3.4 GHZ CPU,
the average delineation time for all four 3D objects is about 39 s.
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