J Math Imaging Vis
DOI 10.1007/s10851-010-0232-4

Linear Time Algorithms for Exact Distance Transform

Krzysztof Chris Ciesielski - Xinjian Chen -
Jayaram K. Udupa - George J. Grevera

© Springer Science+Business Media, LLC 2010

Abstract In 2003, Maurer et al. (IEEE Trans. Pattern Anal.
Mach. Intell. 25:265-270, 2003) published a paper describ-
ing an algorithm that computes the exact distance transform
in linear time (with respect to image size) for the rectangular
binary images in the k-dimensional space R¥ and distance
measured with respect to L ,-metric for 1 < p < oo, which
includes Euclidean distance L,. In this paper we discuss this
algorithm from theoretical and practical points of view. On
the practical side, we concentrate on its Euclidean distance
version, discuss the possible ways of implementing it as
signed distance transform, and experimentally compare im-
plemented algorithms. We also describe the parallelization
of these algorithms and discuss the computational time sav-
ings associated with them. All these implementations will
be made available as a part of the CAVASS software sys-
tem developed and maintained in our group (Grevera et al.
in J. Digit. Imaging 20:101-118, 2007). On the theoretical
side, we prove that our version of the signed distance trans-
form algorithm, GBDT, returns the exact value of the dis-
tance from the geometrically defined object boundary. We

J.K. Udupa was partially supported by NIH grant RO1-EB004395.

K.C. Ciesielski ()

Department of Mathematics, West Virginia University,
Morgantown, WV 26506-6310, USA

e-mail: KCies@math.wvu.edu

url: http://www.math.wvu.edu/~kcies

K.C. Ciesielski - X. Chen - J.K. Udupa - G.J. Grevera

Dept. of Radiology, MIPG, Univ. of Pennsylvania, Blockley Hall
— 4th Floor, 423 Guardian Dr., Philadelphia, PA 19104-6021,
USA

G.J. Grevera

Mathematics and Computer Science Department, Saint Joseph’s
University, 5600 City Avenue, Philadelphia, PA 19131, USA

Published online: 02 November 2010

provide a complete proof (which was not given of Maurer
et al. (IEEE Trans. Pattern Anal. Mach. Intell. 25:265-270,
2003) that all these algorithms work correctly for L ,-metric
with 1 < p < oo. We also point out that the precise form of
the algorithm from Maurer et al. (IEEE Trans. Pattern Anal.
Mach. Intell. 25:265-270, 2003) is not well defined for L
and L, metrics. In addition, we show that the algorithm can
be used to find, in linear time, the exact value of the diame-
ter of an object, that is, the largest possible distance between
any two of its elements.

Keywords Distance transform - Euclidean distance -
Linear time - Digital boundary - Diameter - Digital
geometry

1 Introduction

For a metric space X with a distance A and its non-empty
subset B C X, a distance transform DT is a mapping from
X such that DT (x) = A(x, B) for every x in X, where
A(x, B) def infpep A(x, b). In other words, for every x the
value of DT'(x) is a result of minimization:

DT(x) = inf A(x.b). (1

A feature transform FT is a related argument minimization:

FT(x) = argggg A(x,b). 2)

In particular, if FT (x) € B exists (which is always the case
for non-empty finite B), then DT (x) = A(x, FT(x)). How-
ever, the value of FT(x) need not be unique, see Fig. 1. In
this paper we will consider only the situation when X is ei-
ther the k-dimensional Euclidean space R¥ or its finite sub-
set C, treated as a digital scene.

@ Springer

mailto:KCies@math.wvu.edu
http://www.math.wvu.edu/~kcies

J Math Imaging Vis

Fig. 1 (Color online) The inside rectangle (red) represents the set of
all points of distance r from the image background (outside, in blue)
and can be viewed as its boundary propagation at time t = r/v. We
have DT (c) = DT(d) =r. FT(d) is uniquely defined as b; FT(c) can
be either a or a’

1.1 Background

Distance transform in digital spaces is an important tool in
image processing [1-5, 7, 10, 13, 14]. (See also [23-28].) It
finds widespread use in a variety of image operations such
as filtering, interpolation, segmentation, registration, shape
analysis, shape modeling, image compression, skeletoniza-
tion or medial axis transform, and morphological operations.
Some examples of these operations are as follows; most are
applicable in R¥. A binary image can be interpolated guided
by the shape of the object it represents by first applying a dis-
tance transform to the binary image, then interpolating the
distance map, and finally connecting the interpolated dis-
tance map back to a binary image [10]. This principle can
also be applied to a gray level image [4, 5] by representing
an n-dimensional gray image as a surface shape (binary im-
age) in an (n + 1)-dimensional space where image intensity
forms the height of the surface in (n + 1)th dimension. Me-
dial axis representation of a shape [9] is a powerful concept
that has numerous applications. One of its manifestations in
the digital space is in the form of algorithms to “skeletonize”
binary images. The distance transforms (and the feature
transforms) find extensive use in robust “skeletonization”
operations [1, 2, 15, 16]. Shape model-based techniques are
funding extensive use in medical image segmentation, object
motion tracking, shape analysis, and change detection. In
constructing a shape model from the shape samples given for
a shape family, distance transforms are used in ways analo-
gous to their employment in interpolation. For example, the
given shape samples are first distance transformed, and sub-
sequently, the distance maps are averaged to estimate the
mean of the given sample shapes [17, 18]. Distance trans-
forms are also useful in image segmentation both in binary
and gray level images [19, 20]. The distance transform is
commonly used in image segmentation algorithms that uti-
lize front (e.g., object boundary) propagation. (For more on
this, in a non-digital setting, see also comment (D2) on p. 4.)
When a front is propagated from an initial surface S with a

@ Springer

constant speed v, the front/surface position at time ¢ is pre-
cisely represented as the set of points ¢ at which the value
of the distance transform (i.e., the distance from c to §) is
equal to vz.

The distance transform can be used as a basic tool in
constructing other analysis tools. The algorithm LTdiam we
present in Sect. 3 for finding the exact object diameter is one
such. Roughly, the diameter of an object is the (Iength of the)
longest line segment connecting any two of its points. This
tool is useful, for example, in creating 3D rendered images
of a given object. In scaling the object properly for creat-
ing its projection in the rendered image, information about
the radius of the smallest sphere that just encloses the object
is very useful. Similarly, in Radiology, a standard measure,
as per the RECIST criterion, used to define the size of a le-
sion is its diameter [21]. This is what the algorithm LTdiam
output estimates automatically, unlike in the RECIST guide-
lines wherein the measurement is manual.

1.2 Preliminaries

The focal point of the discussion presented in this paper is
the linear time distance transform LTDT algorithm, which
constitutes our version of the algorithm of Maurer et al. [8].
It returns both a distance transform DT and a feature trans-
form FT. We implemented LTDT for the Euclidean distance
A, but it also works for any metric A satisfying the property
(P) described in Definition 1.1. This generality requires very
little additional effort. Nevertheless, for most readers it may
be natural to assume for the rest of the paper that A stands
simply for the Euclidean distance.

The algorithm LTDT works on binary images defined on
the rectangular grid C = {x(l),...,xlllfl} X oo X {xé,...,
xsk—l} C R¥ of any dimension k > 1. For a non-trivial bi-
nary image I on C (i.e., a mapping from C onto {0, 1}; that
is, with non-empty foreground and background), LTDT re-
turns a distance transform function DT from C into R de-
fined, for ¢ € C, as DT (c) = A(c, By), where By = {d €
C:1(d) = 0} is the image background. It also calculates an
associated feature transform map F7. The algorithm LTDT
runs in time O (n), where n =ny - ... - ny is the size of the
image domain C.

Definition 1.1 Let C be as described above. We say that a
metric A on R* satisfies the property (P) provided the fol-
lowing holds.

(P) For every d = 1,...,k, line R in R* parallel to the
d-axis, and u = (4;) and v = (v;) from C C R¥:
P1) If ug = vg, y € R is such that y; = ug, and
A(u,y) < A(v,y), then A(u,x) < A(v,x) for
every x € R.
(P2) If ug < vg, then there is an xz7 € R (computable
in O(1) time) such that for every x = (x;) from R:

J Math Imaging Vis

<l

Fig.2 Representation in R2 of the point x;z from (P2) on a horizontal
line for Euclidean distance. Points on the slanted line are equidistant
from u and v

if xg < xz%, then A(u, x) < A(v, x); and if x; >
Xuv, then A(u, x) > A(v, x) (see Fig. 2).

Intuitively, conditions (P1) and (P2) both address what
happens with the property “x is closer to u than to v (ex-
pressible as A(u, x) < A(v, x) or A(u, x) < A(v, x)) when
u and v are fixed and x moves along a fixed line R parallel
to one of the axis, labeled as d-axis. (P1) addresses the case
when either u = v or the line through u and v is perpendic-
ular to the d-axis; it tells that the property “x is closer to u
than to v” remains unchanged independently of the position
of x on R. (P2) addresses the case when the line through
u and v is not perpendicular to the d-axis. It expresses the
fact that, in this case, there is a point xzy on line R which
is A-equidistant from u and v and that the validity of “x is
closer to u than to v’ depends only on which side of x; on
R point x lies. See Fig. 2.

Recall that, for 1 < p < oo, the L, metric on RF is de-
fined by the formula A(x, y) = (Y_, [x; — yi|?)"/7. In par-
ticular, the L, metric is the standard Euclidean distance. It is
easy to see that, for p > 1, the L, metric satisfies property
(P). (See Proposition 4.4.) In what follows, we always as-
sume that x(‘)l <. < x,‘fd_l foreveryd =1, ..., k, although
we need not assume that the images are isotropic, that is,
the numbers xfl+1 - xlfl can be different for different indices
i and/or d. Nevertheless, all our figures are presented for
isotropic images and our implementations are tested for this
case. The elements of the grid C will be referred to as spels,
short for space elements. Notice that, in this theoretical set-
ting, the spels are represented as the sequences <xff,)Z: | of
the actual coordinate values (indicating the distances in real
distance units, like mm), rather than as their indices, (i d>];z:1 s
which is a common representation in image processing. For
the isotropic images and L, distances, this distinction actu-
ally makes no difference for the algorithms presented in this
article. However, the distinction is important for anisotropic
images, as discussed in Remark 2.3.

The paper is organized as follows. In Sect. 2, we describe
and discuss different versions of signed distance transform

algorithms that can be derived from the basic algorithm
LTDT. The material presented there is self-contained, ex-
cept that it relies on Theorem 1.2.

In a short Sect. 3, we note that a small modification
LTDT™** of the LTDT algorithm returns, for a binary im-
age I, an exact maximal feature transform MFT:C — By,
that is such that, MDT(x) = Suppep, Alx, b). We also use
LTDT™** to describe an algorithm which returns, in linear
time with respect to the size n of C, a pair s,t € By for
which A(s, t) is equal to the diameter of the set By, which
is such that, A(s, 1) = sup{A(c,d):c,d € By}.

In Sect. 4, we describe in detail the algorithm LTDT and
provide a complete proof of the following theorem, in the
statement of which we use the terminology and notation de-
scribed above.

Theorem 1.2 If C is a rectangular scene in R* and A is a
metric on RF satisfying property (P), then for any non-trivial
binary image I on C, the algorithm LTDT returns the exact
distance transform DT (c¢) = A(c, By) and a related feature
transform FT. It runs in a linear time with respect to the size
nof C.

In particular, LTDT works correctly for L, metrics for
1 < p < oo, which includes the Euclidean metric.

In Sect. 5, we report on the experimental results of apply-
ing some of the discussed algorithms on real medical image
data for testing the algorithms discussed in the earlier sec-
tions. This section also presents an experimental comparison
of different forms of the algorithm and a description of their
parallelization. The paper is completed with some conclud-
ing remarks in Sect. 6.

2 Signed Distance Transform Algorithms

Let I be a k-dimensional non-trivial binary image, that is,
a function from © C R¥ onto {0, 1}. It can be either digital
(i.e., with © in the form of a digital grid C) or geometrical
(i.e., with Q equal to R¥). A Signed Distance Transform for
I is usually defined on Q2 as

SDT;(x) = (—1)!™ A(x, Bd)),

where Bd is a boundary between the foreground F; = {x €
Q:1(x) = 1} of the image I and its background B; = {x €
Q: I (x) = 0}. The main variability in this formula is caused
by the use of different definitions of the boundary Bd;. More
precisely, for geometrical images, the boundary is always
defined as the topological (geometrical) boundary, which
can be expressed as de;' ={xe R*: Ax, Fr) = A(x, Bp)}.
However, for digital images, the set Bd§ is always disjoint
from the grid C (see Fig. 3(a)), so alternative definitions
of the digital boundary are often used, although definitions

@ Springer

J Math Imaging Vis

Fig. 3 (a) Geometric boundary
Bd§ of a binary image / on a

5 x 5 rectangular grid C with
four foreground spels marked by
large dots [13]. (b) The same

.

binary image on the 9 x 9
double resolution grid C’, where
the smallest dots represent
added spels. The digital
boundary Bd’, on C’, marked by
stars, consists of the intersection
of Bd$ with C’

(a)

conforming to Bdf have also been pursued [13]. For ex-

ample, the digital boundary Bd‘,ilg for I is often defined as
the set of all spels ¢ in By C C that are adjacent to some
foreground spels. In fact, the ITK implementation of the
Maurer’s algorithm [12], called the exact distance transform
EDT, is in the SDT; form implemented in 3D and uses
Bd(]i]g defined with 18-adjacency (i.e., ¢, d are adjacent when
llc —d|l < +/3). We also implemented this version of the al-
gorithm, as LTSDT (linear time signed distance transform),
using our version of LTDT and compared it with EDT. Nev-
ertheless, the following arguments (D1)—(D4) listing the de-
sired properties of distance transform algorithms show that,
for most image processing tasks, the SDT§ —the SDT used
with Bd‘f —should be favored over all possible different ver-
sions of SDT.

(D1) Exact linear time implementation. The exact value
of SDT§ can be calculated in linear time with respect to
the size of C of a binary image—see algorithm Geometric
Boundary Distance Transform GBDT described on p. 5.

(D2) Agreement with the geometric version. The fact that
precisely the same formula for SDT can be used for dis-
crete and geometric images is of particular importance for
the energy optimization image segmentation technics (like
level sets or active contours) that find the energy minimiz-
ing surface (object boundary) via its evolution according to
the Euler-Lagrange equations. The evolution requires an-
alytic representation of the current position of the object
boundary, which is usually done implicitly as a level set
of some function W from R¥ (for a k-dimensional image)
into R, that is, Bd = {x € R¥: W(x) = 0}. The usual initial-
ization of W is as SDT;, which in the continuous case is
always taken as SDT®, and it makes sense only to use the
same formula for its digital version, used in the numerical
approximation. Here, the GBDT implementation (see to-
ward the end of this section) of SDT‘;’ in linear time is of
great importance, since during the boundary (front) evolu-
tion, the evolving function W is often reinitialized to SDT
of the new position of the front. Since the algorithm for
calculating SDT is invoked multiple times, this may intro-

@ Springer

*x Kk Kk Kk K

* @ © @ %
*x k Kk Kk ok Kk Kk
[*x @ %
* *
® *x @ %
*x Kk Kk

(b)

duce and accumulate errors if not done correctly and con-
sistently. An example of a front evolution via DT is shown
schematically in Fig. 1.

(D3) Agreement with hyper cube interpretation of spels.
It is common practice to identify each spel ¢ in the isotropic
rectangular digital image with the unit side k-dimensional
cube centered at ¢, and the boundary as a union of the
faces of all such cubes shared by foreground and back-
ground points [13]. (See Fig. 3.) There are many advan-
tages of such definitions of a digital boundary (see [14])
in visualization, processing, and image analysis. For ex-
ample, when distance transforms are used in interpolating
object shape [10], it has been shown that distances deter-
mined with respect to boundaries so defined lead to more
accurate results [5, 7]. The point here is that SDT‘? is equal
to the boundary obtained with a cube-based interpretation
of spels.

(D4) Symmetry with respect to background and fore-
ground. The SDTS, and any other version of SDT; used
with the boundary notion for which the boundary of the
background is equal to the boundary of the foreground,
have the following reversibility property, where 1 — I is the
reversed image of I (i.e. the foreground of [is the back-
ground of 1 — 7, and vice versa):

(r) SDT;(x) =—-SDT1_;(x)

for every x in the domain of image /.

Clearly, any SDT with this property leads to a more con-
sistent distance map when distances from boundary are
needed in an application for both foreground and back-
ground points. The problem with EDT implemented in ITK
(or LTSDT), is that it fails to have property (r). In fact, no
definition of boundary as a subset of B; satisfies (r), as
shown by the following result.

Theorem 2.1 If SDT is defined via formula SDT j(x) =
(=)' A(x, Bdy) and the property (r) is satisfied by a
non-trivial digital image I:C — {0, 1}, then Bdy N C =
Bdi_; NC. In particular, any spel from Bd; N C = Bd1_; N

J Math Imaging Vis

C belongs to the background of one of the images 1,1 — I,
and to the foreground of the other.

Proof f x € Bd; N C, then A(x,Bdi—;) =
| — SDT1_;(x)| = |SDT;(x)| = A(x,Bd;) =0, so x €
Bdi_;. This proves Bd; N C C Bdi—; N C. The other inclu-
sion is proved analogously. The additional comment holds
for any spel from C. O

Of course, if a boundary Bd; of an image J: C — {0, 1}
is defined, for example, as the set of all ¢ € C for which there
is an adjacent d € C with J(c) # J(d), then the property (r)
holds for SDT';. However, this creates a “thick” boundary,
and some crucial information on the distances close to the
geometrical boundary of the object is lost.

Next, we describe the algorithm GBDT, Geometric
Boundary Distance Transform, mentioned above. It works
for the L, distances with 1 < p < co. For a grid C =
{05 o 2} X e X AxG, -, x _y), define grid €7 =
{yé, e, y21n1_2} X e X {y(’)‘, e, y’z‘nk_z}, where, for all ap-
propriate d and i, ygl. = xl.d and ygl. 41 is the mid point be-
tween yé"i and ygl. 4o+ In other words, we double the res-
olution of the image grid in each direction. Let Bd, =
Bd‘f N C’—see Fig. 3. The basis for calculating the exact val-
ues of SDT(c) = (1)@ A(c, BdS), c € C, in O(n) time,
and the rationale for GBDT, are provided by the following
result.

Theorem 2.2 A(c, BdS) = A(c, Bd)) for every c € C.

Proof Clearly Al(c, Bd{;) < A(c, Bd/[), since Bd/l C Bdf. To
see the other inequality, let c € C and d € Bd‘f be such that
A(c,d) = A(c, Bd$). It is enough to show that d € C’. This
can be justified by a simple geometric argument sketched
below.

Let F C Bdf be a face of a k-dimensional cube centered
at ¢, such that F contains d. Let p be the orthogonal projec-
tion of ¢ onto the (k — 1)-dimensional hyperplane contain-
ing F. Note that p € C’, as it has k — 1 coordinates identical
to those of ¢ and one that identifies F; that is, the mid point
between some ygi and ygi 4o If p belongs to F, thend = p
(this is obvious for Euclidean distance L, but holds also for
other L, distances) and so d € C’. Otherwise, d must be-
long to one of the (k — 2)-dimensional hyperplanes forming
the boundary of F, and the argument may be repeated for
this hyperplane. (Formally, the induction on the dimension
of a hyperplane should be used.) O

In the algorithm GBDT, and all other algorithms through-
out the paper, we identify the coordinate numbers x,‘?ﬂ with
their subscripts m; that is, the grid C = {xé, A xilfl} X

k k
- X {xo,...,x

nk—l} is identified with the coordinate set

C*=1{0,...,n1 —1} x --- x {0, ..., n; — 1}. Similar iden-
tification will be done for the grid C’.

More precisely, for ¢ = (cl-)i.‘:1 andd = (dl-)i.‘:1 from C*,
let A*(c, d) be defined as A({xg,)i (leii>i)’ where A is the
(Euclidean or L) distance satisfying (P) for which DT is
calculated. Formally, in all the algorithms presented in this
paper, we should use symbols A* and C* in place of A
and C. However, to avoid additional burden, we will skip
the *-superscript in the algorithm descriptions. This is addi-
tionally justified by the following fact.

Remark 2.3 Let A be an L, metric, with 1 < p < oco. If
the scene C is isotropic, with all numbers N ; = xj. - xj-
(i=1,....k, j=0,...,nq4 — 2) equal to a fixed number 6
(physical units), then A(c,d) = A*(c,d)0 forall ¢,d € C*.
Therefore, for isotropic images, the identification of C* with
C does not require any change in the definition of the dis-
tance function, except a multiplication at the end to express
distance in physical units. However, for anisotropic images,
the distance must be recovered from the numbers Nl.d, which

need to be provided together with the image:

koo _ 1/p
A*({ei), (di)) = (Z Ixt, —x;,.V’) :
i=1

i i j
where |x; — x(ll,- | = Zmin{ci,di}<j§max{ci,di} N;. In other
words, for anisotropic images, the distance function A used
in the algorithms (i.e., A*) should be treated as a subroutine,
given by the above formula.

Algorithm GBDT
Input: Dimension k (> 2) of the image;
ni, ..., ng—the size of the grid; a non-trivial

binary image /: C — {0, 1}.

A signed distance transform SDTj: C — R

defined as SDT;(c) = (—1)!© A(c, Bd$).

Auxiliary A grid

Data C'={0,...,2n1 =2} x---x{0,...,2n; — 2}

Struc- having double resolution with respect to C,

tures: where we identify / with its copy I defined
onC=1{0,2,...,2n] —2} x -+ x
{0,2,....2n, =2} C C' by I(2x) = I (x),
where x = (x1, ..., xx) € C is arbitrary and
2x = (2x1,...,2x;). A binary image I’ on C’
indicating points of Bd}, of I (upon such
identification) as the 0-value points.

Output:

begin
set I'(c)=1forallce C’;
. forallxeCand1<d<kdo
fori=1tokdo

if i #d then y; = x;, else yi = x; + 1;
endfor;

N

@ Springer

J Math Imaging Vis

o

if ye Cand I (x) # I(y) then
set I'(c) = 0 for each of the 3*~!-many spels
¢ € C' on the boundary face between x and y;
8. endif;
9. endfor;
10. invoke LTDT with I’ and appropriate A returning
DT defined on C’;
11. forevery x € C set SDT (x) = (—=1)!® . DT (2x);
12. return SDT7y;
end

~

Theorem 2.4 Algorithm GBDT invoked with the L, dis-
tance, 1 < p <00, on any non-trivial binary rectangular
digital image I returns the signed distance to the geometric
boundary Bd‘}’ between foreground and background. More-
over, GBDT runs in O(n) time.

Proof In this argument, we assume that Theorem 1.2 holds
true.

The execution time of line 1 is of order O(an) = 0(n).
Each execution of lines 3-8 requires O (k) + 02 =0(Q)
operations. Since this loop is entered kO (n) times, execu-
tion of lines 1-9 is done with O (n) operations. Since LTDT
applied to I’ runs in 0(2%n) = O(n) time, and execution of
line 11 requires n operations, GBDT indeed runs in O (n)
time.

Next, note that after the execution of lines 1-9, map I’
is as desired: I'(¢) =0 when ¢ € Bd’,, and I’(c) =1 for all
remaining ¢ € C’. Indeed, after the initiation, in line 1 of I’
with value 1 for all ¢ € C’, we examine (see lines 2-5) all
pairs x, y € C of coordinate distance 1 (i.e., sharing a face of
associated cubes), one from foreground, another from back-
ground. Then, in lines 6-8, we insure that, for all points
¢ € C’ on the common face between 2x and 2y, the value
I'(c) is adjusted to 0.

After the execution of line 10, for every spel ¢ € C' we
have FT(c) = A(C,Bd/l) = A(C,Bd‘f), where the second
equation comes from Theorem 2.2. To finish the proof, it
is enough to note that, in line 11, the factor (—1)'™ fixes
correctly the sign for the signed distance transform. O

The pseudocode of the algorithm LTSDT, defined only in
three dimensions, is just a simpler version of GBDT, with
the boundary defined as a subset of the background defined
with 18-adjacency:

BdY® ={ceC:I(c)=0&|lc—d|| <~/3
for some d € C with I(d) = 1}.

Algorithm LTSDT
Input: ni, ny, n3—the size of the grid; a non-trivial
binary image /: C — {0, 1}.

@ Springer

Output: A signed distance transform SDT: C — R
defined as SDT; () = (—=1)!© A(c, Bd9™).
Aucxiliary A binary image / " on C indicating points of
Data: Bd(lilg of I as the 0-valued points.
begin
set I’(c) =1forall c € C;
forall c e C with I(c) =0do

ford e C and ||c —d|| < /3 do

if I(d)=1thenI'(c)=0;

endfor;
endfor;
invoke LTDT with I’ returning DT defined on C;
forevery x € C set SDT;(x) = (—1)!™ . DT (x);
return SDT;

RNk W=

end

3 Maximal Distance Transform and the Diameter of an
Object

For a metric space X with a distance A and its non-
empty subset B C X, let a maximal distance transform
MDT be a mapping from X given by a formula MDT (x) =
sup,ecp A(x, b) and let a maximal feature transform MFT
map be a related argument maximization: MFT(x) =
argsup,cp A(x, b). Thus, for a non-empty finite set B,
MFT(x) exists for all x € X and it belongs to B. Clearly, the
notions of maximal distance transform and maximal feature
transform are dual, in a sense of interchanging minima and
maxima, with the notions of distance transform and feature
transform. It is therefore not surprising that a simple modifi-
cation of the algorithm LTDT gives us the following result.

Theorem 3.1 If C is a rectangular scene in R* and A is a
metric on R¥ satisfying property (P), then there exists an
algorithm LTDT™ which for any non-trivial binary im-
age I on C returns the exact maximal distance transform
MDT (c) = sup,cp A(c, b) and a related maximal feature
transform MFT. It runs in a linear time with respect to the
sizen of C.

In particular, LTDT™* works correctly for L, metrics
for 1 < p < 00, which includes the Euclidean metric.

Sketch of Proof Let < be the reverse inequality on R, that
is, defined as

x <y ifandonlyif x>y.

Let LTDT™® be a modified LTDT algorithm obtained by
replacing the order relation < with < in its code in every
instance it is applied to A. In the pseudo-codes presented
in Sect. 4, it means only one change, in line 7 in DimUp
routine. (Notice that the change does not apply to the order
of coordinates of points in the scene.)

J Math Imaging Vis

The key result is that such created algorithm LTDT™**
still returns distance and feature transforms with respect to
this modified order <. The proof of this fact is identical to
that presented in Sect. 4, although it requires some care in
noticing that L, metrics satisfy modified condition (P) in
which, once again, the order relation < is replaced by < in
every instance it is applied to A.

Clearly, distance and feature transforms for < are pre-
cisely maximal distance and feature transforms for the stan-
dard order <. O

With this result, we have the following algorithm, which,
for a non-empty object S in C, returns the pair s, ¢ from S
for which A(s, ¢) is exactly equal to the diameter diam(S) =
sup{A(c,d):c,d € S} of S. It is easy to see that it runs in
linear time with respect to the size of C.

Algorithm LTdiam
Input: An object S # ¢ in a k-dimensional rectangular
scene C C RF represented as a background of a
binary image /: C — {0, 1}; the L ,-metric A for
some 1 < p < oo.
Output: A pair s, € S for which
A(s,t) =max{A(c,d):c,d € S}.
begin
1. invoke LTDT™** for I and A returning MDT and
MFT;
2. find an s € § with MDT (s) = max{MDT(c):c € S};
3.return s and t = MFT(s);
end

Note that by performing the modifications for the GBDT
version of DT, we can get geometric diameter for object S
(i.e., the diameter for the object, in which each spel is re-
placed by appropriate rectangle/cube).

4 LTDT and Its Parallelization

The LTDT algorithm, described in this section, is only a mi-
nor modification of the Maurer et al. algorithm from [8]. We
describe it here in detail, formally prove its correctness (i.e.,
Theorem 1.2), and describe its parallel version.

The material is presented in a “general to detailed” for-
mat, in which different routines used in LTDT are introduced
and discussed in the order from the most general (last to be
used) routine to the most particular one. Although such pre-
sentation has its challenges, it is our belief that it gives the
reader better overview of how the algorithm really works,
emphasizing its general structure (general routines) and only
successively exposing the reader to its deeper, more techni-
cal aspects. Thus, even without going through all details pre-
sented in this section, the reader will have a better chance to
recognize the ideas that lie behind LTDT.

Actually, LTDT computes a feature transform FT for I,
see (2), and DT is calculated from FT only at the output
stage by calling the function DT (c) = A(c, FT(c)). The
computation of FT is done recursively on the dimension
of the image. To express it precisely, we will need the fol-
lowing notation, in addition to that already introduced ear-
lier. For every number 0 <d <k and x € C, let H;(x) =
{ce C:c; =x; foralld <i <k} be the d-dimensional hy-
perplane containing x that results from fixing the termi-
nal k — d coordinates, that is, the coordinates with indices
greater than d. Also, if 1 <d <k, then R;(x) will denote
a one-dimensional row in R¥ parallel to the d-th axis, that
is, Rg(x) = {c € Rf:¢; = x; forall i # d}. We say that a
function F:C — By U {#} is a d-dimensional approxima-
tion of FT at x € C provided F(x) constitutes a value of
the feature transform for 7 [Hy(x), the image I restricted
to Hy(x). We included the empty set ¥ in the range of F,
since Byp,(x) = Br N Hy(x) can be empty, even when B;
is not; in such case we put F(x) =, while in all other
cases we require that A (x, F(x)) = A(x, BfN Hy(x)). Such
an F is a d-dimensional approximation of FT provided it
is a d-dimensional approximation of FT at every x € C;
that is, when, for every x € C, its restriction F [Hy(x) to
H,(x) is a feature transform for I | H;(x). Notice that the k-
dimensional approximation of FT (for a k-dimensional im-
age) is its true FT, while the O-dimensional approximation
F of FT has the property that F'(x) is equal to x for x € By,
and is equal to ¥ otherwise.

4.1 The Algorithm Outline: Dimension Step-Up

In this subsection, we will construct the LTDT algorithm
using a subroutine DimUp described in Fig. 4, which is a
variant of VoronoiFV routine from [8]. We will also prove
Theorem 1.2, assuming the properties of DimUp listed in
Fig. 4, that is, that LTDT indeed returns the distance trans-
form and that it runs in time O (n). The detailed description
of DimUp and the proof of the properties listed in Fig. 4 are
included in the latter part of this section.

DimUp input: Row R;(x) indicators: x e C and 1 <d <
k; a function F:C — Bj U {#} which is a (d — 1)-
dimensional approximation of F7T atevery c € Ry;(x) N C.

DimUp output: A modified F: C — B; U{{} whichisad-
dimensional approximation of FT at every c € Ry(x) N C.
The values of F at points ¢ ¢ R;(x) remain unchanged.

DimUp running time cost: O(ny), where number ng is
the size of the row Ry (x) N C.

Fig.4 Properties of DimUp routine, used in LTDT, discussed in detail
in Sect. 4.2

@ Springer

J Math Imaging Vis

For 1 <d <k, let C;j ={x € C:xy = 1} be the hy-
perplane passing through (1,...,1) and perpendicular to
Rg(x). Note that Cy has size n/ng.

Algorithm LTDT
Input: Dimension k (> 2) of the image;
ni, ..., ng—the size of the grid; a non-trivial

binary image /: C — {0, 1}.

A distance transform DT: C — R for the
image /.

Auxiliary A feature transform F: C — C U {{J}. A queue

Output:

Data: Q of points from C. Dimension counter d.
begin
1. forallx € Cdo
2. if I(x)=0then F(x) =x else F(x) =;
3. endfor;
4. ford=1tokdo
5. push all points from Cy to Q;
6. while Q is not empty do
7. remove a point x from Q;
8. invoke DimUp with x, d, and current F’;
9. endwhile;
10. endfor;
11. forallx € C do
12. DT(x) = A(x, F(x));
13. endfor;
end

Lines 1-10 of this algorithm represent procedure Com-
puteFT from [8]. In lines 1-3 we define F as O0-dimensional
approximation of FT. Our main contribution here is the
proof of the following lemma.

Lemma 4.1 If algorithm DimUp works correctly, then for
every non-trivial binary image [defined on a grid C =
{0,....,n1 — 1} x---x{0,...,nx — 1}, algorithm LTDT re-
turns the exact distance transform DT for the image I. It
does it in time O (n), where n is the size of C.

Proof After execution of lines 1-3, the map F represents the
0-dimensional approximation of FT for I, as Hy(x) = {x}.
This part runs in O (n) time.

Next notice that for every d =1, ..., k, when LTDT en-
ters lines 5-9, F is a (d — 1)-dimensional approximation
of FT for I; when it exits lines 5-9, F is a d-dimensional
approximation of FT for 7.

This statement is proved by mathematical induction on d.
For d = 1, the entry requirement is guaranteed by lines 1-3.
For d > 1, this is ensured by the inductive assumption. To
finish the argument it is enough to show that the execution of
lines 5-9 transforms (d — 1)-dimensional approximation F
of FT for I to the d-dimensional approximation of FT. This
is guaranteed by the assumptions on DimUp: when execut-
ing lines 5-9, each row R;(x) of C is considered precisely

@ Springer

TRIM input: Spel x € C and number 1 < d < k indicating
row R =R;(x) N C; afunction F: C — By U {#} which is
a (d — 1)-dimensional approximation of F7T at every c € R.

TRIM output: A list (q1,...,qgm), 0 <m < ny, of points
from G = {F(x):x € R} such that

@) A(x,{g;:1<j<m})=A(,G)forevery x € R;

(i) (gj)a < (gj+1)a for every 1 < j <m, and xg—q <
Xgigy forevery 1 <i <m.

TRIM running time cost: O(ng), where ng is the size of
the row R.

Fig. 5 Properties of TRIM routine, used in DimUp, discussed in
Sect. 4.3

once, and running DimUp for this row changes the values of
F on this (and only this) row from (d — 1)-dimensional ap-
proximation of FT to d-dimensional approximation of FT.

Next note that, for each d, the while loop from lines 6-9
is executed precisely n/n; many times (the size of Cy), and
each time the execution cost of DimUp is of order O (ng).
Thus, each execution of lines 5-9 runs in time of order
(n/ng)O(ng) = O(n). Thus, the total time of running lines
1-10is of order O (n) + kO (n) = O(n).

Finally, note that, after the execution of the loop 4-10,
F represents k-dimensional approximation of FT for I,
which is the true FT for I. The execution of the loop 11-13
is still of order O (n) (we assume that calculation of A(x, y)
is O(1)) and the resulting DT is indeed an exact distance
transform for 7. O

4.2 DimUp Procedure: Further Reduction

The goal of this subsection is to provide a detailed descrip-
tion of the DimUp routine, using a subroutine TRIM de-
scribed in Fig. 5, and prove, in Lemma 4.3, that it has the
desired properties. The detailed description of TRIM and
the proof of its properties listed in Fig. 5 are included in
the latter part of this section.

The main theoretical feature responsible for the correct-
ness of the TRIM routine is the following result. In its state-
ment it is possible that By N Hy;(z) is empty, in which case
A(x, By N Hy(z)) = A(x, @) is interpreted as oco. In partic-
ular, the lemma says that B; N H,;(z) is empty if and only if
G is.

Lemmad.2 LetC={0,...,n1—1}x---x{0,...,n—1},
I be a binary image on C, R =R;(z)NC be arowin C, and
F:C — B; U{@} be a (d — 1)-dimensional approximation
of FT at every x € R. If metric A has property (P1) and G =
{F(x) € Bj:x € R}, then G C By N Hy(z) and A(x,G) =
A(x, By N Hy(z)) for every x € R. In particular, for every

J Math Imaging Vis

X € R, the value of a d-dimensional approximation of FT at
X can be chosen from G U {@}.

Proof To see that G C H;(z), pickay e G andletx € R be
such that y = F(x) € Hy—1(x). Then y; = x; for all i > d.
Since x € R C Ry(z) implies that x; = z; for every j #d,
we have yp =z¢ forall £ > d. So, y € Hy(2).

Inclusion G C By N Hy(z) clearly implies A(x, G) >
A(x, By N Hy(z)). To show the other inequality, choose
an arbitrary u € By N Hy(z). We need to find a v e G
such that A(x,v) < A(x,u). Let y € R C Hy(z) be such
that y; = u4. Since also, for all £ > d, y, = 7y = uy, as
y,u € Hy(z), we conclude that u € H;_1(y). In partic-
ular, By N Hy—1(y) > u is non-empty, so v = F(y) € G
belongs to By N Hy—1(y) and has a property A(y,v) =
A(y,Br N Hy_1(y)) < A(y,u), since F is a (d — 1)-
dimensional approximation of FT at y € R. So, by (P1),
A(x,u) > A(x,v). O

Lemma 4.2 tells us that if we like to upgrade F from
being a (d — 1)-dimensional approximation of 7 on R =
R4(z) N C to being a d-dimensional approximation of FT
on R, the values of this new F can be chosen from the val-
ues of old F on R, that is, from G = {F(x):x € R}. In our
upgrade procedure, we will need first to further restrict our
choice of the values of new F on R to a subset of G U {{J}.
This will be done with the TRIM procedure with properties
listed in Fig. 5.

Using TRIM it is easy to describe the DimUp algorithm.
This is actually a part (lines 15-24) of the VoronoiFT proce-
dure from [8].

Algorithm DimUp
Input: A (d — 1)-dimensional approximation F of
FTon R=R;(c)NC.
Output: A d-dimensional approximation F of FT on
R.
Auxiliary A queue Q of points from C. A counter ¢.
Data:
begin
1. invoke TRIM for R and F to get list (g1, ...
2. if m >0 then
3. push all points from R to Q in the increasing
order
(i.e., with x; = 1 for the first removed point);
initialize £ = 1;
while Q is not empty do
remove a point x from Q;
while £ <m and A(x,q¢) > A(x,qey1) do
L=0+1;
endwhile;

2 qm);

O oA

0. F&)=gqe
11. endwhile;
12. endif;

end

Lemma 4.3 Assume that A satisfies (P2). If algorithm
TRIM works correctly and the input function F for DimUp
is a (d — 1)-dimensional approximation F of FT on R =
Rg(c) N C, then the output version of F for DimUp is a d-
dimensional approximation of FT on R. Moreover, DimUp
runs in O (ng) time, where ng is the size of the row R.

Proof By our assumptions on TRIM, the execution time of
line 1 is of order O (ny). The total number of times lines 7-9
can be executed during the entire program run is bounded by
m < ng.Since Q has asize ng, this means that lines 5—-11 are
executed with O (ng) operations. So, DimUp requires only
O (ng) operations.

Now, m = 0 precisely when F(x) = @ for all x € R,
in which case B N H;(c) = (4, and the algorithm correctly
leaves all these values unchanged. So, assume that m > 0,
that is, that the set H = {q1, ..., ¢} is non-empty. We en-
ter the loop from lines 5—11 precisely ny times, and on its
ith execution, we have x; = i for the removed x from the
queue Q. Let ¢; be the value of the counter £ upon leaving
the ith execution of the loop. Notice, that upon entering the
loop for its ith execution the value of the counter £ is equal
to £;—1, where £g = 1 by line 4 of the code. We will show,
by induction on i =1, ..., ng, that upon leaving the ith ex-
ecution of the loop, the following inductive condition holds.

(Ci) F(x)=gqe andforevery1 <j<{;<n=<m
A(x,qj) = Alx,qe) & Ax,qe) < Alx, qn),
(3)
where x € R is such that x; = i.

Notice that (3) implies that A(x, F(x)) = A(x, g¢;) <
A(x,{q1, .- -, gm}), while A(x,{q1,...,gm}) = Alx,G) =
A(x,B N Hy(x)) is a consequence of Lemma 4.2 and
the property (i) of TRIM output. Therefore, (3) implies
that A(x, F(x)) < A(x, BN Hy(x)), that is, F becomes a
d-dimensional approximation of F7T at x upon leaving the
ith execution of the loop from lines 5—11; remains so, since
the value of F' at x does not change any more during the
further execution of TRIM. Consequently, the proof of (C;)
will complete the proof of the lemma.

To prove (C;) fixani =1, ..., ng and assume that (C;_1)
holds provided that i > 1. First we will argue for the first in-
equality. Solet 1 < j < ¢;. If j < ¥£;_1, then i > 1, since
otherwise we would have 1 < j < £g = 1, a contradiction.
Let x € R be such that x; =i — 1. So, by the inductive as-
sumption (C;—1), A(F.q;) = A(F.qe,_,)-

Since (g;)a < (qe;_;)a» property (P2) implies that x4 >
Xq5q0, - Thus, as x4y =i >i — 1 = x4, we have x; >

@ Springer

J Math Imaging Vis

Xgiq5 and, by property (P2), A(x,q;) > A(x,qe,_,).
Moreover, execution of the loop from lines 7-9 insures that
A(x,qe_) = A(x,q) = A(x, qq,) for every £y <t < £;.
This implies that A(x, g;) > A(x, g¢,) forevery 1 < j < £4.

To show the second inequality, take ¢; < n < m. Then
i +1 <n <m and the fact that loop 7-9 stopped means
that A(x, qe;) < A(x,qg;+1). For n = £; 4+ 1 this finishes
the proof. Therefore, assume that we have s =n — (¢; +
1) > 0. Since (g¢;)a < (qe;+1)a, property (P2) implies
that x; < TR Then, {xm:j =0,...,s} and
{(ge;+)a:j =0,...,s} are increasing by the property (ii)
of TRIM output, so, property (P2) (used s-times with the
inequalities x4 < xm) implies that also the se-

quence {A(x,qe4+j+1):j =1,...,s} is strictly increasing.
In particular, A(x,ge,) < A(x,qe4+1) < AX, Qo +1+45) =
A(x, gp), finishing the proof. (]

4.3 The TRIM Procedure

In this subsection we will provide a detailed description
of the TRIM routine and prove, in Lemma 4.6, that it has
the desired properties claimed in Fig. 5. This, together with
Proposition 4.4 and Lemmas 4.3 and 4.1, will complete the
proof of Theorem 1.2.

We will start with proving, in Proposition 4.4, that the L,
metrics satisfy the property (P). Although the actual proof
of Lemma 4.6 does not require this result, the TRIM rou-
tine uses the values of x;7 from the property (P), so it may
be easier to follow TRIM description having already de-
termined actual procedures for finding x3y in the practical
cases we emphasize.

Proposition 4.4 For 1 < p < oo, if A is the L, metric
on R¥, then it satisfies the property (P) defined in Defini-
tion 1.1.

Proof We will use the notation from (P). To see (P1),
note that A(u,y)? =} ., |ui — yi|” and similarly for
A(v, y)P, since ug = y; = vq. Also, since x and y be-
long to the same line parallel to d-axis, x; = y; for all
i #d. So, Au,x)? = lug — xal” + 3 ;24 lui — yil? =
lvg — xq|” + A(u, y)P. Similarly, A(v, x)? = |vg — x4|” +
A(v, y)P. So, since function g(x) = x? is strictly increasing
on [0, 00), A(u, y) < A(v, y) implies A(u, y) < A(v, y)?,
thus A(u, x)? = |vg — x4|? + A(u,)P < |vg — x41? +
A, y)? = A(v,x)P, and also A(u, x) < A(v, x).

To see (P2), notice that every point x on R parallel to the
d-axis is uniquely determined by its dth coordinate x;. Let
h(xg) = A(x, u)? — A(x, v)P. We will show that £ is strictly
increasing and that xi is a zero point of /. Indeed, it is easy
to see that A(u,x) < A(v, x) precisely when h(xg) < O.
Thus, a zero of & must satisfy (P2).

Clearly function h(xg) = Zf:l lx; —u;|? — Zf:l |x; —
v;|P is continuous. To prove that it is strictly increasing,

@ Springer

it is enough to show that it has positive derivative at all
points except possibly for x; = ug and x4 = vy. Since
W (xa) = = (xa — ual? — |xa = val?), for ug < va < xa,
we have 1/ (xg) = p((xg — ug)?~' — (xg — va)?~1) > 0 as
Xg — Ug > xg — vg > 0 and function x?~! is strictly in-
creasing on (0, 00). Similarly, for x5 < ug < vg, we have
B (xq) = p(—(ug — x2)P~" + (vg — x)?~1) > 0 as vg —
X4 > ug —xq > 0. Finally, for the remaining case ug < x4 <
vg, we have ' (xg) = p((xqg — ug)? ' 4+ (vg — x2)P~1) > 0.

The existence of a zero point for z follows from the In-
termediate Value Theorem and the fact that 4 attains both
positive and negative values. To see this last fact, we note
that lim,, ;, + o0 1 (1g) = F00. The argument for the limit re-
quires some algebraic work, but it follows from a simple
estimate [11, Lemma 3, p. 121], proven with calculus tools,
that (a + b)? > a? + pbaP?~! for non-negative ¢ and b. [

Remark 4.5 As the above arguments show, for L, metrics
with 1 < p < oo the number x3 can be defined as the dth
coordinate of the unique point on the line R equidistant from
u and v. In fact, this is the way xyy is defined in [8, Remark
3]. However, for the L; metric, such a point need not ex-
ist. On the plane R? and for line R being the x-axis, this
is justified by points # = (0,0) and v = (2, 1), for which
Alx,u)—A(x,v) =|x1|—|x1—1|—2 < —1forany x € R.
For Lo, metric (defined as Aqo(u, v) = max{|u; — v;|:i =
1,...,k}) number x;y always exists, but it need not be
unique. On the plane and the same line R, this is justified
by points # = (0,1) and v = (1, 1) since then any point
(a,0) € R with a € [0, 1] is equidistant from u and v. Al-
though this means that the precise recipe from [8] does not
work for these two metrics, a simple modification of the al-
gorithm (for LTDT the change needs to be made in the defi-
nition of the CHECK subroutine) can still produce a correct
version of the algorithm.

Assume that | < p < oo and arow R =Ry(c) N C is
fixed, where ce Candd =1, ...,k. Let u,v € C be such
that uy < vg. Then, according to Proposition 4.4, xz (for
the row R) is the number x; for which the function i (xy) =
A, u)P = A, v)? = Y0 i —xi|P = Y5y v — xilP
is equal to 0. For a general value of p, this can be found
by a simple numerical approximation. However, for p =
2—the most important case of the Euclidean distance, the
one which we actually implemented—the equation takes
the form (xg — uq)? + Diza(Xi — u)? = (xq — va)* +
Z#d(xi — vi)z, or, equivalently, (vg — ug)(2xq — ug —
vg) = Zj;,gd(xi - Ui)2 - Zi;gd(xi - ui)2~ Thus, x5 = x4
is a solution of this linear equation.

n the calculation of the number xz3, the distinction of the spel real
coordinates (x;’fl)5:1 from their index representation (id)’[‘,:] is of im-
portance for the anisotropic images, see Remark 2.3.

J Math Imaging Vis

In what follows, we will use a boolean valued subroutine
CHECK(u,v,w), which depends on a row R, is applied to
u,v,w e C with uy < vy < wy, and is true when there is no
integer i =0, ...,ng — 1 for which xzy < x4 < xyw. Note
that CHECK is a refinement of procedure REMOVEFT
from [8] defined as x;7 > xyw. TRIM works correctly with
either version of these procedures. However, our experi-
ments show that the implementation with CHECK works
slightly faster.

We implemented the algorithm for isotropic scenes

and identified coordinates xg .. .,x,‘fﬁl with the indices
0,...,ng — 1. In this case, we were able to implement

CHECK(u,v,w) simply as [(xim)d] > [(xyw)a], where [r]
is the smallest integer greater than or equal to r, and |r] is
the greatest integer less than or equal to r.

Algorithm TRIM

Input: Row R =R, (x) N C indicators: x € C and

1 <d < k; afunction F:C — Bj U {#} which
is a (d — 1)-dimensional approximation of FT
atevery ¢ € R.

Alist Q =(q1,---,qm) of points from

G = {F(x) € By:x € R} satisfying (i) and (ii).
Auxiliary Counters i, m and point pointers u, v. Q is

Output:

Data: obtained by removing some points from the
list G.
begin

1. setm=0;

2. fori=1tongdo

3. if F(xj) # 0 then

4. setm=m+1;

5. set gm = F(x;);

6. if m > 1 then

7. setu =qm—1;

8. set v = qpm;

9. if Xy > ng then
10. setm=m —1;
11. else
12. while m > 2 and

CHECK(gm—2, gm—1,gm) do

13. set gm—1=qm;
14. setm=m — 1;
15. endwhile;
16. if m =2 then
17. setu =qi;
18. set v =q»;
19. if xzv <0 then
20. set g1 = q2;
21. setm =1;
22. endif;
23. endif;
24. endif;
25. endif;

26. endif;
27. endfor;
28. return sequence (g1, ..., gn) for the current value
of m;
end

Lemma 4.6 Assume that A satisfies (P). Then TRIM works
correctly and runs in O (ng) time.

Proof The TRIM procedure should be viewed as starting
with G as a first approximation of the queue Q and remov-
ing some of its terms to ensure the second part of condition
(i1) from TRIM output requirement (property (C;) below),
while preserving (i) (condition (B;)). The first part of (i)
(property (A;)) is preserved by any pruning, since G has
already this property.

To see that TRIM runs in O (ny) time, note that it enters
the loop from lines 2-27 precisely n, times. The i-th run
time of this loop is of order O(1) 4+ 2P;, where P; is the
number of runs of the loop from lines 12-15. Since each
time this loop is run, one value from the set {F(x;):i =
1,...,n4} isremoved, we have Py +---+ P,, < ngq. There-
fore, TRIM indeed runs in time Y < (O(1) + 2P;) =
O(ng).

To prove that the output of TRIM satisfies (i) and (ii), we
will show, by induction on i = 1, ..., ng, that, after com-
pleting the i-th run of a loop from lines 2-27, the following
holds, where m; stands for the value of m at this point of
program execution, and G; = {F(x;) € B:1 < j <i}.

(A) (gj)a < (gj+1)a for every 1 < j < m;, and all these
q;’s belong to G;.

(Bi)) Ax,{gj:1=<j<m;})=A(x,G,) forevery x € R.

(Ci) Xgi=iq7 < Xgiq; forevery 1 < j <m.

This will finish the proof, since then TRIM’s output value
of m is equal to m,,, the set G,, equals G from TRIM’s
output description, and so, the conditions (A,,)—(C,,) are
the restatement of (i) and (ii).

Assume that mg = 0. Then G¢ and the g-sequence are
empty, so conditions (Ag)—(Cop) are satisfied. Thus, we just
need to show that, for every i = 1,...,ny, if conditions
(Aj—1)—~(C;j_1) are satisfied upon entering the code lines
2-27, then (A;)—(C;) hold upon finishing their execution.

Note that, after each execution of lines 2-27, the
g-sequence may have more than m; elements. However,
only the first m; of its elements are of consequence, and
these first m; elements constitute the g-sequence (possibly
empty) satisfying (A;)—(C;).

If F(x;) =0, then G; = G;_; and none of lines 4-25
is executed, so m; = m;_1 and the g-sequence remains un-
changed. This clearly implies (A;)—(C;). So, for the rest of
the proof, assume that F (x;) # 0.

The execution of lines 3-4 temporarily extends the
g-sequence (by assigning to m; = m value m;_; + 1) and

@ Springer

J Math Imaging Vis

puts F(x;) at its end. This initial assignment ensures (A;)
and (B;). However, (C;) may be false at this stage, and the
sequence may need to be trimmed to ensure (C;) while pre-
serving (B;). This is done in lines 6-25.

Clearly, by the inductive assumption (A;_p), at this stage
the sequence satisfies (A;), since (F(x;))q > x4 for every
x € G;_1. To see that the execution of lines 625 preserves
(A;), it is enough to note that the only changes to this se-
quence in lines 6-25 are either through dropping the last
sequence element (in line 10) or by replacing the second
to the last of its elements by the last one and shortening
the sequence by 1 (lines 13—14 or 20-21). These operations
clearly preserve (A;).

Now, if we enter line 6 withm =m; = 1, then m; _1 =0,
and, by (B;_1), we have G;_1 = . Although, at this case,
the condition in line 6 insures that no other lines are exe-
cuted, this implies that m; = 1 and G; = {F (x;)} = {q1},
so (B;) and (C;) hold. So, assume that at line 6 we have
m; =m > 1, that is, that the g-sequence has at least two ele-
ments. Next we will decide whether its last element is in the
proper position and, if not, modify the sequence.

Thus, when entering line 7 we know that our g-sequence
has at least two elements. In lines 7-11 we check whether
there is any reason to keep ¢, in the sequence.” If not, we
can simply remove it. More precisely, since G; = G;_1 U
{F(x;)}, condition (B;_1) implies that for every x € R we
have A(x,G;) = A(x,Gi—1 U {gn}) = Alx,{g;:1 < j <
m}). Assume that the condition from line 9 is satisfied.
Then, the only executed line in the rest of the loop is line
10, which discards the last element of the sequence. This
means that m; = m = m;_1. Now, to show that this se-
quence satisfies (B;) and (C;), note that x5z is to the right
of every x € R. This means that for m =m;_1 + 1 we
have A(x, gm—1) = A(x,u) < A(x,v) = A(x, gi). In par-
ticular, A(x, G;) = A(x,{g;:1 < j <m}) = Ax,{g;:1 <
Jj <mj;_1}) is equal to A(x, G;_1) for every x € R. There-
fore, in this case, (B;_1) and (C;_1) imply (B;) and (C;) for
m; =m;_1.

Next, we assume that the condition from line 9 fails.
Thus, we enter the key program loop of lines 12-15. We
claim that upon exiting the loop, condition (B;) is pre-
served, while (C;) is already satisfied. Indeed, each time
the lines 13-14 are executed, the second to the last ele-
ment, g,,—1, is removed from the current queue (q1, ..., gm)
and the length indicator m is properly reduced. This op-
eration does not influence the condition (B;), since satis-
faction of the predicate CHECK(g;,—2, gm—1,¢m) means
that for every x € R either A(x,gu—2) < A(x,gm—1)
(when x4 < xg,5g,=7) or A(x,gm) > A(x, gm—1) (When

2Execution of lines 9—10 is not necessary for insuring correct output
(i)—(ii) of TRIM. However, it may remove some unnecessary redun-
dancy from the queue Q.

@ Springer

X4 > Xg,—q,)» and therefore A(x,{q1,...,qm-2,q9m}) =
A(x,{q1, .-+ gm—2,4m—1,qm}). Thus, property (B;) sur-
vives execution of the loop. Also, upon leaving the loop, ei-
ther m = 2, in which case (Cj;) is satisfied in void, or m > 2
and CHECK(g,—2, gm—1,qm) is false, which implies that
Xgm3Gm=t < Xgn=ig.- This, together with the inductive as-
sumption of (C;_1) insures (C;).

To finish the proof, it is enough to show that execution of
lines 16-26 preserves conditions (B;) and (C;). This is ob-
vious, when m > 2 after completing line 15. So, assume that
we have m = 2 when entering line 16. Then, the situation is
analogous to that from lines 9-10. The g-sequence consists
of just two elements, ¢; and g = ¢. This sequence remains
unchanged, unless xz77; < 0, in which case we remove g
from the queue. This preserves (B;), since xz7g7; < 0 implies
that A(x, q1) > A(x,q) forall x € R. ([l

4.4 Algorithm Parallelization

A parallel version of LTDT is easy to create, since the task
of finding FT by this algorithm is done recursively for each
hyperplane H in R¥ and the calculations are independent of
each other for disjoint hyperplanes. Thus, the simplest way
to parallelize algorithm LTDT with m processors or threads
of execution is to proceed with the following steps, where
LTDT* returns FT instead of DT, that is, it is run with only
the first 10 lines of LTDT.

(S1) Split ng hyperplanes Hy_1(x) N C perpendicular to the
kth axis into m disjoint families 7 ; of approximately
equal size of ny/m.

(S2) For each j =1,...,m and each hyperplane H from
H; apply LTDT* on the j-th processor to calculate
FT for the image I | H. Each such part is calculated
in time of O(n/ny). Since the multiprocessors are run
simultaneously, all calculations will be completed in
time O (ng/m)0 (n/ny) = O(n/m).

(S3) After step (S2) is finished, apply lines 5-9 of LTDT
with d = k. Then execute lines 11-13 to return DT

This algorithm returns proper DT, and, assuming that
nx > m, runs in time O (n/m). Moreover, if in any of the al-
gorithms we replace LTDT by its parallel version described
above, the running time of the resulting algorithm will be
reduced m-fold.

5 The Experiments

In this section, we report the experimental results of ap-
plying some of the discussed algorithms on real medical
image data for calculating the signed distance transform
SDT;(x) = (= 1)@ A(x, Bd;) for two different definitions
of the image boundary: Bd; (which is equivalent to using

geometric boundary Bd‘}') and Bd‘,ﬁg.

J Math Imaging Vis

Table 1 A description of the

binary images used in our Image Size No. of spels Object Source

experiments
I 256 x 256 x 256 16,777,216 Pelvic vessels MRI
I 254 x 214 x 65 3,533,140 Talus bone MRI
Iz 256 x 256 x 46 3,014,656 Gray matter MRI
Iy 256 x 256 x 46 3,014,656 White matter MRI
Is 256 x 256 x 46 3,014,656 Head soft tissue MRI
Is 512 x 512 x 90 23,592,960 Pelvic bone CT
I 512 x 512 x 90 23,592,960 Pelvic soft tissue CT
I3 512 x 512 x 256 67,108,864 Pelvic bone CT
Iy 512 x 512 x 256 67,108,864 Pelvic soft tissue CT
Lo 512 x 512 x 459 120,324,096 Pelvic bone CT
I 512 x 512 x 459 120,324,096 Pelvic soft tissue CT
I 1023 x 1023 x 128 133,955,712 Head soft tissue CT
113 1023 x 1023 x 128 133,955,712 Skull CT

All algorithms were implemented for the Euclidean dis-
tance and isotropic images. The programs were imple-
mented on a cluster using the MPI/Open MPI standard. Each
computer in the cluster is a Dell Optiplex GX620, which
consists of a 3.6 GHz Intel Pentium D dual core [22] proces-
sor with 2 GB of RAM, running the Windows XP OS. These
computers are connected by an inexpensive 1-gigabit switch
(Dell Power-Connect 2608 8-port Ethernet switch). In our
presentation of results, “Gold” denotes the gold standard
method wherein distances are calculated via an exhaustive
comparison. This method is not usable on large data sets
and the symbol ‘> n hr’ means that we have terminated the
execution of the program after n hours. In addition, for each
tested image we compared the outputs of all tested algo-
rithms, when appropriate, to experimentally confirm that
their outputs actually agree, which should be the case for
the exact DT algorithms. No discrepancies were detected.

The binary images used in our experiments are obtained
by thresholding patient MR and CT images of the head
and pelvis from a variety of past/ongoing clinical research
projects. For example, the MRI brain images pertain to Mul-
tiple Sclerosis patients, where our goal was to study the
effectiveness of image-based markers in characterizing the
disease. In the MRI pelvic images, our goal was to display
the vessels free from clutter. In the pelvic and foot images,
our goal was to create statistical models of the shape of the
objects in these body regions for their automatic segmen-
tation, delineation, and motion analysis. A description of
these images, including the objects they represent and their
sizes, is summarized in Table 1. Some binary image slices
from these objects, together with their distance transforms
obtained via LTSDT, are displayed in Fig. 6.

Tables 2 and 3 summarize the experiments performed
on eleven 3D binary images. Performances of both sequen-
tial and parallel algorithms are listed in these tables. The

times reported in Table 2 constitute total computation time
for the entire process—taking a binary image as input, do-
ing all necessary operations, and producing a gray distance
image as an output. The algorithm L2 (i.e., LTSDT with
FT) computes the signed distance transform SDT;(x) =
(DI A(x, Bdclhg), where A(x,Bd‘,hg) is computed with
LTDT, in which FT is recorded. The algorithm L1 (LTSDT
with no FT) computes the same values with LTDT*, in
which the value of the feature transform function F that
LTDT and DimUp return is replaced by the distance trans-
form function F*. This reduces memory use, and, slightly,
the running time. The reduction works for the L, distances,
since in such settings the value A(x, g¢) can be easily cal-
culated: A(x, g¢) = ((xqg — ya)? + F*(y)?)!/P, where y is
on the line parallel to the d-axis passing through x and
q¢=F(x).

Our motivation to parallelize distance transform algo-
rithms was that, in several segmentation and registration
methods, DT is called repeatedly (100 s of times). There-
fore, even if each (sequential) application were to take only
a few minutes, the total time before the main application is
completed could be prohibitive. Thus parallelization has the
potential to save a considerable amount of time in such pre-
cesses. Although all algorithms presented here run in linear
time with respect to the number of spels, this is not born out
in Table 2. Surprisingly, this is mainly due to the fact that
the actual distance computation part for the algorithm is a
small fraction (4-25%) of the total time. A bulk of the time
is taken up by the three house keeping operations—creating
boundary image for the input binary image (30-50%), net-
work transmission of image chunks between Master and
Slaves (17-21%), combining results and producing output
(25-40%). A break up of these factors is listed in Table 3 for
the four largest images. It is clear that the actual DT compu-
tation time is inversely proportional to the number of proces-
sors used and linear with respect to the image size. It is also

@ Springer

J Math Imaging Vis

Fig. 6 Slices from some of the
3D binary images used in the
experiments and their respective
distance transform images.

(a, b): Pelvic vessels; (a) shows
a 3D rendition of the vessel tree
and (b) shows the DT in a slice
located near the bottom of the
vessel tree. (¢, d): Talus bone of
the foot. (e, f): Gray matter.

(g, h): White matter. (i, j): Head
soft tissue. (k, I): Skull

Table 2 Comparison of running times of the SDT; algorithms used transform; L2—Our proposed LTSDT, output distance transform and
with the non-symmetric boundary deig, see Sect. 2. Algorithms: E1— feature transform; P-L2: Our proposed parallel LTSDT, output distance
EDT from ITK, output only distance transform, no feature transform; transform and feature transform

L1—Our proposed LTSDT, output only distance transform, no feature

No. of Algorithm Running time in seconds

processors I Iy Is Is I Ig Iy Lo Iy Iz IE
1 El 4 4 4 24 27 70 77 125 145 133 155
1 L1 3 3 2 20 26 56 77 105 141 125 145
1 L2 3 4 3 23 30 66 87 128 153 147 157
3 P-L2 3 3 3 24 30 67 90 127 170 155 161
7 P-L2 4 4 3 24 30 58 83 107 150 136 145

11 P-L2 4 4 4 24 32 55 78 101 145 131 138

@ Springer

J Math Imaging Vis

Table 3 Break up of the four component times in the parallel
implementation. C1—boundary finding initial operation, C2—actual
calculation of DT, for two-dimensional (co-dimension one) hyper-
planes, C3—image data transfer between Master and Slaves, C4—
combination of the results, including finding DT for the last dimension.
The last column represents the combined time the slaves use to calcu-
late DT, which, as expected, is approximately the same for each image,
independently of the number of processors used

Image No. of Running time in sec No. of processors
processors (] (C2 (C3 (4 timesC2
Lo 3 35 33 19 40 99
35 14 18 40 98
11 35 9 17 40 99
Iy 3 70 30 22 48 90
70 13 19 48 81
11 70 8 19 48 88
I 3 62 25 33 35 75
62 11 28 35 77
11 62 7 21 35 T
113 3 70 22 31 38 66
70 9 28 38 63
11 70 6 24 38 66

clear that, since the actual DT valuation is very rapid, speed
up in DT operations on binary images can be harnessed only
by parallelizing some of the house-keeping, particularly the
boundary finding, operations.

The fact that the maximal running times of EDT and
LTSDT from Table 2 are of linear order of magnitude with
respect to the image size suggests that the actual times
should also be approximately linearly dependent on the im-
age size. To test this hypothesis, we displayed the times es-
timated in our experiments, as functions of image size, in
Fig. 7 for the sequential implementation. Indeed, for all al-
gorithms the relation is approximately linear.

Figure 7 and Tables 1-3 also show that both versions of
LTSDT outperform EDT, the difference in performance be-
ing greater as the image size increases.

Table 4 reports the experimental comparison of GBDT
and a version of “Gold” for this setting. The grid size is
increased 8-fold (doubled in each dimension), so we ran
the experiments on smaller 3D binary images Ji—J3 of
respective sizes: 128 x 128 x 24, 256 x 256 x 46, and
512 x 512 x 96. Notice that the size of images J> and I3 are
the same, so the actual image on which GBDT calculates
DT is 8 times the size of that for LTSDT. The actual run-
ning time of GBDT in that image is 13 times that of LTSDT,
rather than the expected 8 times. This perhaps has something
to do with some peculiarity of our implementations.

Although the Gold completed calculation of DT only for
the smallest image J, it should be stressed that its output

200

—— L1

150

100

Time (seconds)
s

o 2 4 6 8 10 12
Image size (number of spels) , 107

Fig. 7 A plot of the running time of sequential algorithms: LTSDT
(both versions) and EDT with respect to image size for the sequen-
tial algorithms. As expected, the relation is approximately linear (we
display here the results for only images Is, I, I7, 110, and 1;3)

Table 4 Comparison of running times of the SDT; algorithms used
with the geometric boundary Bd‘f , implemented with Bd';, see Sect. 2

No. of Algorithm Running time in sec
processors J I 5
1 Gold 5125 > 10hr > 10hr
1 GBDT 3 18 161
3 parallel GBDT 3 19 175
7 parallel GBDT 3 18 153
11 parallel GBDT 3 18 149

fully agreed with that from GBDT . Note also that for GBDT
the relation between image size and running time seems also
to be linear in nature.

The diameters of 7 objects listed in Table 1 obtained
by LTdiam algorithm are listed in Table 5. For each im-
age I:C — {0, 1} we identified its foreground in two dif-
ferent ways: as a digital object F; ={c € C:I(c) =1}, and
as a geometric version F,g of Fy, which is defined as a
union of all unit cubes centered at spels ¢ from F;. Actu-
ally, the diameter of F f is equal to the diameter of the ob-
ject Fj =F f N C’, where the C’ is the double resolution
scene. (The argument for this is similar to that for Theo-
rem 2.2.) Thus, to calculate its diameter we actually apply
LTdiam to F;. Notice that the diameters of F f are slightly
larger than those for F7y, as can be expected.

6 Concluding Remarks

Distance transform is a computationally expensive but ubig-
uitously needed operation in image processing. Given its ex-
tensive use, expense, the ever increasing spatial and tem-
poral resolution of medical images, and the need to han-
dle 2D, 3D, and 4D concepts for objects and boundaries
in relation to DT, efficient, generalizable, and parallelizable
schemas for DT are very crucial. The algorithm of Maurer
et al. [8] was an important contribution from these consider-
ations. In this paper, we have extended their method in two

@ Springer

J Math Imaging Vis

Table 5 Object diameter (in mm) calculated using LTdiam for the
seven objects listed in Table 1. The object is defined as digital or geo-
metric, as explained in the text

Object Diameter in mm of the
Digital object Geometric object

I1: pelvic vessels 298.6719 298.8380
I: talus bone 51.0434 51.3698
I3: gray matter 211.8546 212.2860
14: white matter 213.0751 213.5265
Is: head soft tissue 215.8026 216.2616
Is: pelvic bone 344.0323 344.4512
I13: skull 149.8486 150.2962

ways. First, we have constructed a full theoretical justifica-
tion of those ideas. Second, we have designed a new DT
definition with respect to the geometric boundary, which af-
fords nicer theoretical properties and more refined distance
values, and we have shown that the ideas underlying [8] can
be extended to this new design. Although it is computation-
ally more expensive, the new algorithm GBDT is a preferred
method for an accurate, true, and a theoretically consistent
distance transform. Note that this becomes especially im-
portant when measurements are made based on DT. Finally,
since the actual DT operations in the family studied here
are extremely rapid, parallelization for saving considerable
amount of time on repeated use of DT (100 s of times) on bi-
nary images should focus on house-keeping operations that
support DT.

Acknowledgements The authors like to thank Thaw Htaik for as-
sisting them in setting up the parallel environment and helping to run
the experiments in this environment.

References

1. Bai, X., Latecki, L.J., Liu, W.: Skeleton pruning by contour par-
titioning with discrete curve evolution. IEEE Trans. Pattern Anal.
Mach. Intell. 29(3), 449-462 (2007)

2. Beristain, A., Grana, M.: Pruning algorithm for Voronoi skeletons.
Electron. Lett. 46(1), 39-41 (2010)

3. Cuisenaire, O.: Distance transformations: fast algorithms and ap-
plications to medical image processing. Dissertation (1999)

4. Grevera, G.J.: Distance transform. In: Suri, J.S., Farag, A. (eds.)
Parametric and Geometric Deformable Models: An Application in
Biomaterials and Medical Imagery. Springer, Berlin

5. Grevera, G.J., Udupa, J.K.: Shape-based interpolation of multidi-
mensional grey-level images. IEEE Trans. Med. Imaging 15(6),
881-892 (1996)

6. Grevera, G., Udupa, J., Odhner, D., Zhuge, Y., Souza, A., Iwanaga,
T., Mishra, S.: CAVASS: a computer assisted visualization and
analysis software system. J. Digit. Imaging 20(1), 101-118 (2007)

@ Springer

10.
11.
12.

13.

14.

15.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpola-
tion. IEEE Comput. Graph. Appl. 12(3), 69-79 (1992)

Maurer, C.R. Jr., Qi, R., Raghavan, V.: A linear time algorithm for
computing exact Euclidean distance transforms of binary images
in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell.
25(2), 265-270 (2003)

Pizer, S.M., Gerig, G., Joshi, S.C., Aylward, S.R.: Multiscale me-
dial shape-based analysis of image objects. Proc. IEEE 91(10),
1670-1679 (2003)

Raya, S.P., Udupa, J.K.: Shape-based interpolation of multidimen-
sional objects. IEEE Trans. Med. Imaging 9(1), 32—42 (1990)
Royden, H.L.: Real Analysis. MacMillan, New York (1988)
Tustison, N.J., Siqueira, M., Gee, J.C.: N-D linear time exact
signed Euclidean distance transform. Insight J., January—June
(2006). http://hdl.handle.net/1926/171

Udupa, J.K.: Multidimensional digital boundaries. Graph. Models
Image Process. 56(4), 311-323 (1994)

Udupa, J.K., Grevera, G.J.: Go digital, go fuzzy. Pattern Recognit.
Lett. 23, 743-754 (2002)

Ge, Y., Fitzpatrick, J.M.: On the generation of skeletons from dis-
crete Euclidean distance maps. IEEE Trans. PAMI 18(11), 1055-
1066 (1996)

da Fontoura Costa, L.: Robust skeletonization through exact
Euclidean distance transform and its application to neuromor-
phometry. Real-Time Imaging 6(6), 415431 (2000)

Souza, A., Udupa, J.K.: Automatic landmark selection for active
shape models. Proc. SPIE Med. Imaging 5747, 1377-1383 (2005)
Tsai, A., Well, W., Tempany, C., Grimson, E., Willsky, A.: Mu-
tual information in coupled multi-shape model for medical image
segmentation. Med. Image Anal. 8(4), 429—445 (2004)

Marai, G.E., Laidlaw, D.H., Crisco, J.J.: Super-resolution regis-
tration using tissue-classified distance fields. IEEE Trans. Med.
Imaging 25(2), 177-187 (2006)

Nyul, L.G., Udupa, J.K., Saha, PK.: Incorporating a measure of
local scale in voxel-based 3-D image registration. IEEE Trans.
Med. Imaging 22, 228-237 (2003)

Theresse, P., Arbuck, S.G., Eisenhauer, E.A., et al.: New guide-
lines to evaluate the response to treatment in solid tumors, Euro-
pean Organization for Research and Treatment of Cancer, National
Cancer Institute of the United States. J. Nat. Cancer Inst. 92, 205—
216 (2000)

Intel Pentium D 800 Processor 800 Sequence Datasheet
(download.intel.com/support/processors/pentiumd/sb/307506.pdf),
2006

DiazDe Ledn S., J.L., Sossa-Azuela, J.H.: Mathematical morphol-
ogy based on linear combined metric spaces on Z2 (Part I): fast
distance transforms. J. Math. Imaging Vis. 12(2), 137-154 (2000)
Mehnert, A.J.H., Jackway, P.T.: On computing the exact Euclidean
distance transform on rectangular and hexagonal grids. J. Math.
Imaging Vis. 11(3), 223-230 (1999)

Xu, M., Pycock, D.: A scale-space medialness transform based on
boundary concordance voting. J. Math. Imaging Vis. 11(3), 277-
299 (1999)

Kimmel, R., Kiryati, N., Bruckstein, A.M.: Sub-pixel distance
maps and weighted distance transforms. J. Math. Imaging Vis.
6(2-3), 223-233 (1996)

Teixeira, R.C.: Medial axes and mean curvature motion II: Singu-
larities. J. Math. Imaging Vis. 23(1), 87-105 (2005)

Choi, S.W., Seidel, H.-P.: Linear one-sided stability of MAT for
weakly injective domain. J. Math. Imaging Vis. 17(3), 237-247
(2002)

http://hdl.handle.net/1926/171
http://download.intel.com/support/processors/pentiumd/sb/307506.pdf

J Math Imaging Vis

Krzysztof Chris Ciesielski received
his Master’s and PhD degrees in
mathematics from Warsaw Univer-
sity, Poland, in 1981 and 1985, re-
spectively. He works at West Vir-
ginia University since 1989. He is
an author or coauthor of three books
and over 100 research papers. Most
of this work is in pure mathematics
(analysis, topology, and set theory).
However, since 2003 he switched
his interests to medical imaging,
with special emphasis on image
segmentation, and conducts his re-
search in this area mainly in the
University of Pennsylvania, where he holds a position of Adjunct Pro-
fessor.

Xinjian Chen received the PhD de-
gree (with honors) in 2006 from the
Center for Biometrics and Security
Research, Key Laboratory of Com-
plex Systems and Intelligence Sci-
ence, Institute of Automation, Chi-
nese Academy of Sciences, Beijing,
China. After graduation, he entered
Microsoft Research Asia and re-
searched on Handwriting Recogni-
tion. From January 2008 to Octo-
ber 2009, he was a Postdoctoral Fel-
low in the Medical Image Process-
ing Group, Department of Radi-
ology, University of Pennsylvania,
Philadelphia. From October 2009, he has been a Postdoctoral Fellow
in the Radiology and the Image Sciences Department, Clinical Center,
National Institutes of Health, Bethesda, Maryland. His research inter-
ests include medical image processing, pattern recognition, machine
learning, and their applications.

Jayaram K. Udupa received his
PhD degree in Computer Science
from the Indian Institute of Science,
Bangalore, in 1976. He has been
at the University of Pennsylvania,
Philadelphia since 1981, where he
has been a Professor of Radiologic
Science since 1994 and the Chief
of the medical image processing
group since 1991. He is an author
of two edited books and over 155
journal papers. Most of his work is
related to medical image process-
ing, analysis, and visualization, and
their medical applications. His cur-

rent interests are in building body-wide fuzzy models and utilizing
them in various medical image analysis and clinical applications.

George J. Grevera is an Associate
Professor of Computer Science at
Saint Joseph’s University, Philadel-
phia, PA, USA. He received his PhD
in Computer and Information Sci-
ence from the University of Penn-
sylvania with specialization in med-
ical imaging, especially visualiza-
tion and parallel algorithms. Prior to
that, he earned a MS in Electrical
Engineering Drexel University, and
a BS in Computer Science and Biol-

@ Springer

	Linear Time Algorithms for Exact Distance Transform
	Abstract
	Introduction
	Background
	Preliminaries

	Signed Distance Transform Algorithms
	Maximal Distance Transform and the Diameter of an Object
	LTDT and Its Parallelization
	The Algorithm Outline: Dimension Step-Up
	DimUp Procedure: Further Reduction
	The TRIM Procedure
	Algorithm Parallelization

	The Experiments
	Concluding Remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

