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Traditional minutiae-based matching algorithms are challenged by the probability that minutiae from
different regions of different fingers may not be well matched, and hence lead to erroneous matching
results. In this paper we introduce a novel feature called minutia handedness to deal with this problem.
First, reference points are detected and additional checking conditions are added to ensure that genuine
and accurate reference points can be found. Second, minutia handedness is defined for each minutia
according to the bending degree of its associated ridges or the position of the reference points. There
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:__(ieg'vgr‘f;t matchin are three types of minutiae handedness: right-handed, left-handed and non-handed. Finally, the match-
Mifutii & ing rules between different types of minutiae handedness are set up. The proposed method is tested on

eight data sets of FVC2002 (2002) and FVC2004 (2004). The experimental results indicate that the perfor-
mance of a convectional fingerprint recognition algorithm can be improved by incorporating minutia
handedness with a small increment of template size.
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1. Introduction

Fingerprint is much more reliable than most other biometrics
such as signature, face and speech (Jain et al., 1997b), and has been
widely used in many important applications such as electronic per-
sonal identification cards, and e-commerce. However, fingerprint
recognition is still a challenging task. The performance of even a
state-of-the-art matching algorithm is still much lower than most
people’s expectations and theory estimation (Pankanti et al.,
2002). Therefore, much effort is still needed to improve the perfor-
mance of the fingerprint recognition system.

Based on the features used in fingerprint matching, most existing
algorithms can be classified into two categories: minutiae-based
approaches and global feature-based approaches. It is widely be-
lieved that minutiae are the most discriminating and reliable fea-
tures in fingerprints. Many matching methods based on minutiae
have been proposed (Maltoni et al., 2009; Jain et al., 1997a). Since
the relative transformation between two fingerprints is unknown
in advance, the correspondence between minutiae is very ambigu-
ous. Many researchers have tried to attach local features to minutiae
to reduce ambiguity. These local features include ridge information
(Jain et al.,, 1997a; He et al., 2003), local orientation features
sampled around the minutiae (Tico and Kuosmanen, 2003) and local
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minutiae structure features (Chen et al., 2006; Ratha et al., 2000).
Recently, He et al. (2006) proposed a global comprehensive similar-
ity-based fingerprint matching algorithm, in which a minutiae-sim-
plex, including a pair of minutiae as well as their associated
textures, were employed to achieve fingerprint matching. He et al.
(2007) extended this approach by representing a fingerprint as a
graph, in which the comprehensive minutiae acted as the vertex
set and the local binary minutiae relations were used to provide
the edge set. Some researchers combined other local features to in-
crease the discriminative ability between minutiae. Feng (2008)
combined a texture descriptor and a minutiae descriptor to measure
the similarity between minutiae. Wang et al. (2007a) defined two
rotation and translation invariant features (OrientationCode and
PolyLine) and fused them to calculate the similarity between corre-
sponding minutiae. Local information can even be employed to gen-
erate an alignment-free cancelable template (Lee et al., 2007).
Although incorporating more discriminative information into
minutiae can reinforce the individuality of fingerprints and improve
the system performance, two fingerprints from different fingers
may contain similar minutiae, orientation and ridge features in a
partial region. Fig. 1 shows an example of a pair of fingerprints from
FVC2002 DB1. To intuitively solve this problem is to reject the input
fingerprint with small overlapping region. However, this approach
will result in a large false rejection rate because there may also be
a small overlapping region for a genuine match as shown in Fig. 2.

Global features are widely used in identification, indexing
(Chang and Fan, 2002) and classification (Shah and Sastry, 2004).
Jain et al. (2000) proposed a fingerprint representation called the
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Fig. 1. An example of two fingerprints from FVC2002 DB1. Minutiae from different
regions of different fingers are matched very well. The circles denote the matched
minutiae: (a) thinned image of 56_1.tif; (b) thinned image of 98_1.tif; (c)
registration of (a) and (b).

FingerCode. In this method, a reference point was first detected
and a fixed-length feature vector was extracted by using Gabor
filters in the region surrounding the reference point to represent
the fingerprint. Lee and Wang (2001) proposed a local Gabor-based
approach in which the Gabor filters were determined by using local
information. Jin et al. (2004) integrated wavelet and Fourier-
Mellin transform to produce a translation, rotation and scale
invariant feature. Although these algorithms can solve the problem
shown in Fig. 1, it is difficult to achieve the matching process when
the reference point is missing.

Fig. 2. An example of a pair of fingerprints from FVC2002 DB1 with a small
overlapping region: (a) thinned image of 29_6.tif; (b) thinned image of 29_7.tif; (c)
registration of (a) and (b).

Minutiae-based algorithms cannot characterize the overall
ridge pattern of the fingerprint, whereas reference point-based glo-
bal features are very sensitive to the accuracy of the reference
point detection. It is desirable to explore robust fingerprint repre-
sentation schemes which combine global and local information in
a fingerprint to reinforce the individuality of fingerprints. Gu et al.
(2006) proposed to combine the global structure (orientation field)
and local cues (minutiae) to represent a fingerprint. Similarities
based on the orientation field and minutiae were fused in the deci-
sion level to calculate the matching score. However, this method
has the same shortcomings as the minutiae-based matchers that
overlapping regions of different fingers may possess a similar ori-
entation field, as shown in Fig. 1. Inspired by the conclusion that
integration at the feature level provides better recognition results
than other levels of integration (Jain et al., 2005), we propose a
minutiae-based fingerprint matching algorithm by incorporating
the global knowledge into minutiae descriptor. The contributions
of our paper include: first, the reference point detection algorithm
is improved and some additional checking conditions are added to
ensure that accurate and genuine reference points can be found.
Second, minutia handedness, which is determined by its associated
ridges or the position of the reference points, is proposed to im-
prove the matching performance. The proposed algorithm is tested
on eight data sets of FVC2002 (2002) and FVC2004 (2004). The
experimental results indicate that the performance of a convec-
tional fingerprint recognition algorithm can be improved by incor-
porating minutia handedness.

The rest of this paper is organized as follows. Section 2 gives the
definition of the feature of minutia handedness. Section 3 describes
our matching algorithm with minutia handedness. Experimental
results are reported in Section 4. Finally, the conclusions are drawn
in Section 5.

2. Minutia handedness

In this section we introduce a novel feature called minutia
handedness to capture global knowledge. It is defined for each
minutia according to the bending degree of its associated ridge
or the position of the reference points. Three types of minutiae
handedness are defined in this paper: right-handed, left-handed
and non-handed. A right-handed minutia means that all the refer-
ence points are on the right side of the minutia if we stand on the
minutia point and turn our face to the minutia direction. Similarly,
a left-handed minutia means that all of the reference points are on
the left side of the minutia. Non-handed minutia means that the
handedness cannot be determined for it. However, some finger-
print images may miss the reference point and the position of
the reference point may be affected by noise. In this paper, we
use the property that ridges generally bend backwards to the ref-
erence point is utilized to cover the shortage of an inaccurate ref-
erence point. If the ridge associated with a minutia has a large
bending degree, the minutia handedness is determined by its asso-
ciated ridge, otherwise by the reference point.

2.1. Minutia handedness determination by associated ridges

We first present the representation of the ridges associated with
a minutia. Two widely used types of minutiae are ridge ending and
ridge bifurcation. For a ridge ending, it has only one associated
ridge. The ridge is sampled every gth point, and it is represented
as P = {p; = (x;,y;)}i", as shown in Fig. 3(a), where n, denotes the
number of sampling points and p; denotes the ridge ending. As
for a ridge bifurcation, it has three associated ridges and each ridge
is first sampled starting from the minutia. In order to simplify the
calculation, the two nearest ridges surrounding the angle of the
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bifurcation are averaged to generate a virtual ridge. Thus, the vir-
tual ridge and the remaining real ridge are connected to generate
a new ridge as shown in Fig. 3(b). Similar to ridge ending, the sam-
pling point set can also be represented as P = {p; = (x;,;)}4»
where n, is the total number of the sampling points. It is worth
noting that the points are ordered according to the minutia’s direc-
tion. For a minutia M, its handedness determination is described as
follows.

In this paper, the height of the ridge is used to measure its bend-
ing degree. Let A and C denote the first and the last points, respec-
tively, of the ridge P(A=p; and C = Pn, ). The height of the ridge P is
defined as the maximal distance from the point set P to the line AC
that connects A and C. Let B denote the point that maximizes the
distance and D denote the projection point of B on the line AC, then
the length of BD (i.e. |BD|) is the height of the ridge, as shown in
Fig. 9. If |BD| is larger than the threshold Hy{(n,), which is a mono-
tone increasing function of the total sampling number np, then
ridge P is regarded as having adequate bending and the minutia
handedness of M can be determined by it.

(b)

(d)

For a triangle AABC, its area Saapc with a sign is calculated as 1/2
times the value of a determinant (O’Rourke, 1988), known as

Xa Yo 1 1 1
Sangc = 3 xg yp 1| = E(XB —Xa)(Yc —Ya) — E(XC —Xa) (Vg — Ya)
X Yo 1

(1)

From the above formula, the minutia handedness can be easily ob-
tained. It is regarded as right-handed if Saapc <0, otherwise left-
handed.

On the other hand, if ridge P is not bending adequate, the minu-
tia handedness of M cannot be determined by P. In this case, it is
defined based on the reference point. If no reference point is avail-
able, then the minutia handedness of M is set as being non-handed,
otherwise, it is determined by the relation between the ridge and
the reference point.

2.2. Minutia handedness determination by the reference point

2.2.1. Reference point detection

Before detecting the reference point, the orientation field of the
input fingerprint image of H x W pixels is computed by the ap-
proach proposed by Bazen and Gerez (2002). In order to improve
the efficiency of the detection, the pixel-wise orientation field is di-
vided into (H/w) x (W/w) blocks of grid size w and the block ori-
entation field O is obtained by using average orientation. The
reference point detection is based on the block orientation field.
Two types of reference points are used in this work: core point
and the point of maximum curvature in concave or convex ridges
(MC point for short).

We will first discuss core point detection. There are several
techniques to detect singular points (Novikov and Kot, 1998;
Kawagoe and Tojo, 1984; Nilsson and Bigun, 2003; Wang et al.,
2007b) in fingerprints. In this paper, we adopt complex filtering
(Nilsson and Bigun, 2003), which provides not only the position
but also the angle of a singular point, to detect the core point.

(e) Tm

Fig. 4. lllustrations of core point detection: (a) original fingerprint image (1_1.tif from FVC2002 DB1); (b) orientation image; (c) foreground mask; (d) core-certainty map on
the block orientation field (w = 6); (e) binarization of the core-certainty map (ur = 0.45); (f) fingerprint image with the core point and its orientation. (d) and (e) are resized to

obtain better visual effects.
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The orientation tensor over the block orientation field is obtained
by the following equation

Z = c0s(20) + isin(26) (2)

where 0 is the block orientation field. Convolutions between orien-
tation tensor and symmetry filters (Nilsson and Bigun, 2003) result
in two certainty responses: Zcore and Zgeyq. The following approach is
adopted to sharpen the magnitude of the core point responses (Nils-
son and Bigun, 2003):

Heore = |ZCOr€|(1 - |Zdelta|) (3)

The centroid of each region, where the certainty measure is larger
than the prefixed threshold ur, is regarded as a core point candidate,
and the average angle of the z.,. in this region is viewed as the an-
gle of the corresponding candidate. Fig. 4 illustrates the core point
detection process.

Note that there may be false candidates in a fingerprint. The fol-
lowing three operations are proposed to remove them:

(1) Based on the observation that the region opposite to the
angle of the core point possesses a large curvature, we take
the candidate with small a curvature as a false one. The
geometry of regions R; and R, (Jain et al., 1999), as shown
in Fig. 5, is adopted to capture the curvature. For each candi-
date, the geometry is transformed to ensure that its angle
and centre coincide with the angle and position of the candi-
date respectively. The curvature measure D is computed by
the following formula:

D =3|cos(Oki — 0c)| — %ﬁl €0s(Ok,; — 0c) (4)
R,

2

where 6, is angle of the core candidate, Oy, is the orientation at
point (k,l), and R} and R, are the transformed versions of R; and
R, respectively. If D is less than the threshold Dy, i.e. D < Dr,
then this candidate is set as being false and is removed from
the candidate set.

Fig. 5. Semi-circle mask (Jain et al., 1999) for false core point removal and MC point
detection. The arrow points to the angle of the mask.

Fig. 6. An instance on 54_1.tif from FVC2002 DB1: (a) detected core points; (b) after
the removal of the false core point.

(2) For some images with noise in the high curvature regions,
there may be two similar candidates. Assuming that 0, and
0p are the angle of core point candidates a and b respectively,
0Oqp is the orientation of the line connecting a and b. a and b
are considered to be similar if they satisfy the following
three conditions: (1) 41(040p) < 07, (2) 42(04 ,0ap) < 01, and
(3) 722(0p, 0gp) < 07, where 1(01,0;) is the angle distance
between 0, and 0, /»(01,0,) is the orientation distance
between 0; and 0,, and 0y is the threshold. Since the core
point is defined as the topmost point on the innermost
upward recurving ridgeline of fingerprint (Srinivasan and

Fig. 7. An instance on 97_1.tif from FVC2002 DB1: (a) detected core points; (b) after
the removal of the false core point.
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(c) (d)
Fig. 8. Four instances in MC point detection. Green circle denotes the detected MC
point. (a) a partial fingerprint from the fingertip and MC point (FVC2002 DB1
1_5.tif); (b) a complete arch-type fingerprint image and MC point (FVC2002 DB1
70_1.tif); (c) a partial fingerprint from the fingerbottom and MC point (FVC2002
DB1 39_5.tif); (d) a fingerprint without a reference point (FVC2002 DB1 29_6.tif).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Murthy, 1992), the candidate, which points to the other one
is judged as a false one and removed from the candidate set.
Fig. 6 exemplifies this case.

(3) If the number of candidates is still larger than two after per-
forming the two operations above, one more operation is
needed to select the core points. If the maximal angle dis-
tance between any pair is larger than the threshold (37/4
in our experiment), meaning they have opposite orientation
directions, then the corresponding pair of candidates are
selected as the final core points. Fig. 7 illustrates this case.
Otherwise, all of the candidates are regarded as false ones.

It cannot be guaranteed to find a core point in every fingerprint
image. For instance, there is no core point in arch-type fingerprint
images or some partial fingerprint images. Jain et al. (1999) pro-
posed the sine-map-based method and the geometry of regions R,
and R, to capture the maximum curvature in concave ridges. Chan
et al. (2004) enhanced this approach with some additional checking
conditions. Here, we improve their approach to calculate the differ-
ence of the sine component between region R; and R, (D) and the
continuity of a possible reference point (C). For further details, we
refer the readers to Chan et al. (2004). In order to detect a stable
MC point and avoid a false MC point, the point (k,I) satisfying the fol-
lowing two conditions is selected as a MC point candidate: (1)
Dy > Dihr, (2)Cry > Cenr The first condition ensures that the candidate
must possess a large curvature while the second one ensures that
there are a certain number of concave ridges upon the detected
MC point, thus reducing impact of the noise in the orientation field.
The point with the largest y coordinate in the candidate set is
selected as the MC point on the concave ridges. Afterwards, the

orientation field is flipped upside down and the above procedure
is conducted once again to capture the MC point on the convex
ridges. Fig. 8 presents four results in the MC point detection process.

2.2.2. Minutia handedness determination

Reference points are used to determine the minutia handedness
in this section. Let R = {r; = (xj,yj)}]’7;1 denote the reference point
set, where n, denotes the number of the reference points. For each
reference point E =rj, A, E and C form a triangle. The sign of Sasec
demonstrates the position of E relative to the line AC. If all of the
reference points are on the same side of the line AC, that means
all of the corresponding triangles have the same sign, then the
minutia handedness of this minutia can be determined by the ref-
erence point set. Different from Section 2.1, the minutia handed-
ness of M is set as being right-handed if Sasgc >0, left-handed
otherwise. In practice, noise may impact the position of the refer-
ence points and then result in incorrect minutia handedness.
Therefore, if the minimal distance from the reference point set to
the line AC or the minimal distance between the minutia and the
reference point set is less than the threshold, the minutia handed-
ness of M is regarded as being non-handed. Fig. 9(d) gives an in-
stance satisfying one of these conditions. Fig. 9 exemplifies the
process of minutia handedness determination.

Handedness of a minutia is first judged by its associated ridge. If
the ridge does not bending enough, then the handedness depends
on the reference point. That means minutia handedness is first
determined by ridge and then reference point, and there will not
be a conflict. It is also worth noticing that the determination se-
quence cannot be exchanged. The reason lies in that for a minutia
with a very height ridge, the reference point and point B may be on

Fig. 9. Illlustration of minutia handedness determination. (a) a right-handed minutia determined by its associated ridge; (b) a left-handed minutia determined by its
associated ridge; (c) a right-handed minutia determined by the reference point; (d) an instance that the minutia handedness cannot be determined by the reference point;
and (e) an instance the minutia handedness results from its associated ridge is opposite to that results from the reference point.
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Table 1
Minutia handedness type matching rules.

Type of verification minutia Match with type of reference minutia

00 00, 01, 10
01 00,01
10 00,10

01 =right-handed, 10 = left-handed, 00 = non-handed

the same side of the line AC. In this case, the minutia handedness
obtained from Section 2.1 is opposite with that obtained from Sec-
tion 2.2 and the former one gives the right minutia handedness.
Fig. 9 (e) exemplifies this case. Minutia handedness is a rotation
and translation-invariant feature. Right-handed minutiae are
hardly mistaken for being left-handed and vice versa, even if se-
vere distortion exists in a fingerprint image. Table 1 gives the
matching rules. According to the matching rules, two minutiae
are regarded as non-matchable if and only if one of them is
right-handed and the other is left-handed, otherwise, they are
matchable.

3. Matching method with minutiae handedness

Since minutia handedness can be embedded into any minutiae-
based fingerprint matching algorithm, we embed it into the orien-
tation descriptor proposed by Tico and Kuosmanen (2003) for the
matching performance evaluation. The descriptor comprises the
orientation information at the same sampling points around the
minutia point in a circular pattern. The circular pattern consists
of L concentric circles of radii r;, each one comprises of K; sampling
points py, which are equally distributed along their circumference.
Let a={og,} and b={B,} denote two minutiae descriptors. The
similarity between a and b is computed as

Sab = 1/K’X;kZ]5(M (Ot Bry)) (5)
where K = Z,Lle,, 21(ou1Br1) is the orientation distance between
angles oy and S, and s(x) denotes a similarity value with respect
to the angle x. However, this similarity measure is prone to pair
two minutiae with a large number of valid sampling point. In Feng
(2008), Feng proposed to use the mean similarity value of valid cor-
responding sampling points to compute the similarity Sgp.

Sab = mean(s(2a (%, Bry))) (6)

In this paper, we take the minutia handedness into account. The for-
mula used to calculate the similarity is expressed as follows,

5 {mean(s(),l(oc,(_,, Bx;))) if a and b are matchable
®= o otherwise

(7)

We use the same sampling structures and parameters as in Feng
(2008).

Let {p,}}?, and {q,}}", denote two minutiae sets from the tem-
plate ﬁngerprint and the input fingerprint respectively, and
{Su}p>Ne ., denote the set of 51m11ar1t1es between each minutiae
pair. In the matching process, {Sy},"', is first rearranged in a
decreasing order and the top N; minutiae pairs are used as initial
minutiae pairs for alignment attempt. The alignment-based greedy
matching algorithm (Feng, 2008) is used to establish the minutiae
correspondences, and finally, the following formula is used to cal-
culate the score.

ZZk 15”qu

score = q+t+M if n > nm (8)
0 otherwise

where {(py, qi)}r_; is the matched minutiae pair set, q and t are the
number of minutiae located inside the two fingerprint overlapping
regions for the template fingerprint and the input fingerprint
respectively, and M is a bias parameter balancing FMR and F
NMR. The largest score in the N; attempts is selected as the match-
ing score.

4. Experimental results

In order to show the effectiveness of the proposed approach, we
evaluate both the accuracy of the core point detection and the per-
formance of the global knowledge-minutia handedness incorpora-
tion strategy. The proposed algorithm has been evaluated on the
databases provided by FVC2002 and FVC2004, where each database
contains 800 fingerprints from 100 different fingers. The total num-
ber of genuine matches for calculating the false non-match rate (F
NMR) is 100C3 = 2800. The total number of imposter matches for
calculating the false match rate (FMR) is C2,, = 4950. More details
about the databases and the protocol are available in these websites
(FVC2002, 2002; FVC2004, 2004). All of the experiments are con-
ducted on the same PC with an Intel Pentium 4 processor 3.4 GHz

Table 2
Performance of the proposed core point detection algorithm compared with
(Chikkerur and Ratha, 2005).

Proposed Chikkerur and Ratha (2005)
False core point 8 (of 955) 74 (of 955)
Missed core point 30 11

V”
;// /
— L
=

(c) (d)

Fig. 10. Instances of minutia handedness detection (red denotes right-handed,
green denotes left-handed and blue denotes non-handed; circle denotes ridge
bifurcation and square denotes ridge ending: (a) a partial fingerprint from the
fingertip (FVC2002 DB1 1_5.tif); (b) a complete arch-type fingerprint image
(FVC2002 DB1 70_1.tif); (c) a partial fingerprint from the fingerbottom (FVC2002
DB1 39_5.tif); and (d) a fingerprint without a reference point (FVC2002 DB1
29_6.tif). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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under the Windows XP professional operating system. We provide
the value of the parameters used during the matching process: grid
size of the orientation field (w = 6), radius and angle of the semi-cir-
cle mask (R =8, 0=m/4), thresholds for reference point detection
(e =045, Cipr = 8, D1 =Dy = 12, 0 = /4), and the sampling interval
(q = 10 pixels). We obtain the ridge height threshold by the follow-
ing piecewise function:

8 ifn<5
1.5-n otherwise

Hr(m) = { (©)

All of the experiments in this section share the same parameters.

4.1. Accuracy of core point detection

An experiment is conducted on FVC2002 DB1 to evaluate the
accuracy of core point detection. We manually marked the core
point positions and a total of 955 core points were obtained. As de-
scribed in Chikkerur and Ratha (2005), the detected core point is
considered to be false if the position is more than 30 pixels from
the marked location. The comparison between the proposed algo-
rithm and (Chikkerur and Ratha, 2005) is given in Table 2. Com-
pared with (Chikkerur and Ratha, 2005), although the number of
missed core points is slightly increased, the number of false core
points decreases by 76%. This indicates that the checking condi-
tions are effective to diminish the false core points.

4.2. Accuracy of minutia handedness detection
To demonstrate the accuracy of minutia handedness detection,

we make the following conventions: (1) the handedness of a minu-
tia is said to be incorrectly detected if a right-handed minutia is

N

T

mistaken as a left-handed one or a left-handed minutia is mistaken
as a right-handed one; (2) the handedness of a minutia is said to be
correctly detected if its handedness is not non-handed and not
incorrectly detected. All of the minutiae and their handedness in
the fingerprint images in Fig. 8 are drawn in Fig. 10, where red de-
notes right-handed, green is left-handed and blue is non-handed.
We label these fingerprints in Fig. 8(a)-(d) as fingerprint 1, 2, 3

Table 3
Accuracy of minutia handedness detection.
Fingerprint Minutiae Correct rate  Incorrect Non-handed
number (%) rate (%) rate (%)
1 21 90.5 0.0 9.5
2 48 89.6 0.0 104
3 25 96 0.0 4
4 39 23.1 0.0 76.9
5 60 90 33 6.7
6 24 91.7 0.0 8.3
7 60 76.7 183 5
8 46 71.7 0.0 283
summary 323 774 4.0 18.6
Table 4
Percentage of minutiae which handedness is determined by its associated ridge.
Data set FVC2002 DB1 FVC2002 DB2 FVC2002 DB3 FV(C2002 DB4
Percentage 24.6% 25.0% 24.7% 21.4%
Data set FVC2004 DB1 FVC2004 DB2 FV(C2004 DB3 FVC2004 DB4
Percentage 21.6% 22.3% 20.9% 18.9%

Fig. 11. Instances of minutia handedness detection: (a) 54_5.tif from FVC2002 DB1; (b) 34_1.tif from FVC2004 DB1; (c) 99_8.tif from FVC2004 DB1; and (d) 58_8.tif from

FVC2004 DB2.
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Table 5
Number of fingerprints with reference point on FVC2002 and FVC2004.

Data set FVC2002 DB1 FV(C2002 DB2 FV(C2002 DB3 FVC2002 DB4
No. 787 781 782 752
Percentage 98.4% 97.6% 97.8% 94.0%

Data set FVC2004 DB1 FV(C2004 DB2 FV(C2004 DB3 FVC2004 DB4
No. 794 790 797 697
Percentage 99.3% 98.8% 99.6% 87.1%

and 4 respectively. Another four instances are presented in Fig. 11,
in which the four fingerprints are labeled 5, 6, 7 and 8 respectively.
The accuracy of minutia handedness detection on these 8 finger-
prints is reported in Table 3. The images of Fig. 10(a)-(c) indicate
that the handedness of all of the minutiae are correctly detected.
In Fig. 10 (d), where no reference point is available, the handedness
of 9 minutiae (7 left-handed minutiae and 2 right-handed minu-
tiae) is correctly detected by using stage 1. Fig. 11(d) illustrates
an example of a fingerprint image of low quality in which two core
points are detected and one of them is false. In this case, two left-
handed minutiae between two core points are correctly detected
and no minutia handedness is incorrectly detected. Stage 1 is used
to obtain right minutia handedness by its associated ridge and re-
duce the negative effect of the false or absent reference point. Stage
1 is more reliable than Stage 2. However, no more than 25% minu-
tiae handedness is determined by the ridge in the overall databases
(as shown in Table 4). On the contrary, on average 96% fingerprints
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in FVC2002 and FVC2004 have detected reference points (as shown
in Table 5). Therefore, Stage 2 is a necessary step in minutia hand-
edness calculation. The requirement in Stage 2 that minutia hand-
edness can be defined only when all of the reference points on the
same side also aims to reduce the effect of the false reference point.
This example indicates that minutia handedness is difficult to
incorrectly detect as long as a true reference point exists. In
Fig. 11(c), the MC point is about 70 pixels away from the position
of the core point. Therefore, the inaccurate MC point results in the
wrong type of minutia handedness of the 11 minutiae.

4.3. Matching performance evaluation

In order to validate the performance of the proposed algorithm
(Algorithm C), we also implement two related algorithms (Algo-
rithm A and Algorithm B). The only difference between Algorithm
A and Algorithm C is that Algorithm A uses formula (6) to calculate
minutiae similarity whereas Algorithm C uses formula (7). The dif-
ference between Algorithm B and Algorithm C is the matching
score computation. An additional alignment checking approach,
which is based on core points is added in Algorithm B. An align-
ment attempt is regarded as being correct only if two fingerprints
satisfy one of the following three conditions:

(1) At least one of these fingerprints does not have a core point.
(2) There exists a pair of core points whose direction is opposite
(larger than 37/4).
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Fig. 12. ROC curves over FVC2002. (a) DB1; (b) DB2; (c) DB3 and (d) DB4.
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(3) There exists a pair of core points that are close in position
(less than 40 pixels) and the difference of their direction is
minor (less than 7/4).

Matching score of an incorrect alignment attempt is directly set
to zero.

The receiver operating characteristic (ROC) curves of these algo-
rithms over the eight databases are plotted in Figs. 12 and 13 in
log-log scales. The performance indices provided by FVC2002
and FVC2004 such as EER, FMR100, FMR1000 and ZeroFMR are re-
ported in Tables 6 and 7. From the ROC curves and the indices, we
can see that Algorithm C obviously outperforms the other two.
More details are analyzed as follows:

(1) On the data sets in which most fingerprints are complete, i.e.
FVC2002 DB1, DB2, DB3 and four data sets of FVC2004, the
FNMRs of the proposed algorithm rapidly decrease with
respect to their FMRs. Matching rules of minutia handedness
make the alignment of the two fingerprints from a global
perspective, which rejects most impossible alignments. In
Fig. 1 core point detection over FVC2002 DB1 56_1.tif misses
its core point, whereas MC point is detected accurately.
Using Eq. (6), the matching score between these two finger-
prints is 0.535, while the similarity threshold at EER point is
about 0.459. However, using the Eq. (7), the alignment in
Fig. 1(c) does not occur. The matching score of these two fin-
gerprints is reduced to 0.101, while the similarity threshold
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at EER point is about 0.403. It proves that minutia handed-
ness can effectively reduce the false acceptance rate and
then improve the overall performance. However, alignment
checking does not reject such imposter matches. The match-
ing score of Algorithm B over these two fingerprints is still
0.535. This indicates that alignment checking cannot deal
with fingerprints of the arch type or fingerprint images with-
out a core point. Therefore, over some data sets, ZeroFMRs of
Algorithm B are much larger than that of Algorithm C.

(2) Although there are 18 false core points in the FVC2002 DB1,

as reported in Table 2, the performance of Algorithm C is still
greatly improved. The EERs of Algorithm A and Algorithm C
are 0.90% vs. 0.64%. Their FMR100s, FMR1000s and Zero-
FMRs are 0.78% vs. 0.54%, 2.75% vs. 0.78% and 5.89% vs.
1.71% respectively. This is because the minutia handedness
is robust to false and missing reference points. In stage 1,
the handedness of a minutia with a very height ridge is only
determined by its associated ridge. It could be correctly esti-
mated even if there were false reference points or no refer-
ence point. In stage 2, the minutia handedness can be
determined if all of the reference points are on the same side
of the line. This operation does not have any adverse effects
on the accuracy of the match as long as true reference points
exist. As reported in Table 3, even when true core points are
missed and false core points are detected, most minutiae can
be classified correctly because false core points also possess
a large curvature and are near fingerprint center. However,
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Fig. 13. ROC curves over FVC2004. (a) DB1; (b) DB2; (c) DB3 and (d) DB4.
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Table 6
Performance of the three algorithms on FVC2002.

Data set Algorithm EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)
DB1 A 0.90 0.78 2.75 5.89
B 1.29 1.32 1.71 2.78
C 0.64 0.54 0.78 1.71
DB2 A 1.25 139 5.14 12.54
B 0.64 0.50 2.03 6.64
C 0.40 0.32 0.93 2.64
DB3 A 2.18 2.68 5.89 10.21
B 2.80 3.39 6.29 10.89
C 222 2.86 6.86 11.79
DB4 A 1.39 1.64 5.25 9.36
B 0.93 0.89 3.11 9.36
C 0.93 0.93 3.82 8.54
Table 7

Performance of the three algorithms on FVC2004.

Data set Algorithm EER (%) FMR100 (%) FMR1000 (%) ZeroFMR (%)

DB1 A 10.48 22.54 37.42 45.89
B 9.72 18.21 34.43 41.61
C 8.26 16.79 26.00 38.68
DB2 A 6.16 13.89 24.06 40.14
B 5.80 11.89 22.89 27.21
C 4.97 9.93 21.50 28.54
DB3 A 529 16.61 34.39 45.07
B 4.22 10.64 29.07 43.07
C 2.32 4.04 14.64 31.89
DB4 A 2.58 5.04 15.00 22.00
B 2.26 2.96 9.21 22.14
C 2.00 2.68 6.64 25.60

Algorithm B heavily depends on the accuracy of core point
detection. A false core point such as in Fig. 11(a) may result
in 7 false rejections. When core points are missed, MC point
is taken as reference point in Algorithm C, and minutia
handedness also takes effect. However, if the MC point is
taken into alignment checking in Algorithm B, its perfor-
mance will be worse (large variation in partial fingerprints
and low quality fingerprints).

(3) From Fig. 12(c), we can see that the ROC curves of Algorithm
A and Algorithm C over FVC2002 DB3 are very close. Three
indices (EER, FMR100 and FMR1000) of Algorithm C are
slightly higher than in Algorithm A. Many fingerprint images
from FVC2002 DB3 are incomplete and captured only the
region around or upper the center of the finger. In this case,
the orientation descriptor is capable in finding the best
alignment from a global perspective and this incorporation
scheme seems to provide no assistance for fingerprint
matching.

The average matching times of Algorithm C over the four dat-
abases of FVC2002 are 7.62 ms, 13.07 ms, 3.44 ms and 5.32 ms
respectively. Over the four databases of FVC2004, the figures are
8.23 ms, 7.10 ms, 12.60 ms and 9.06 ms respectively. The average
matching times of Algorithm C are shorter than in Algorithm A be-
cause similarities between non-matchable minutiae do not need to
be calculated and are set to zero directly, the difference is less than
0.2 ms.

5. Conclusion and discussion

The primary contribution of our approach is that it takes the
global knowledge into account. Minutia handedness is proposed

to capture the global knowledge. As long as a true reference point
exist, the false reference has less effect on the matching perfor-
mance. The experimental results proved the proposed method
can improving matching performance efficiently. Since there are
only three types of minutiae handedness, two bits are enough to
store the type of minutia handedness. Therefore, the proposed
algorithm needs only small additional computational resources.
It can be embedded into any minutiae-based fingerprint matching
algorithm. However, in FVC2002 DB3, most fingerprints are cap-
tured only the region around or upper the center of the finger.
Then, the orientation descriptor is capable in finding the best align-
ment from a global perspective, and the case such as Fig. 1 is hard
to occur. Therefore, fingerprint matching does not benefit from
minutia handedness. Future work includes analyzing under what
conditions it will make the best of minutia handedness and utiliz-
ing delta points and/or classification information to further im-
prove the performance and reduce running time.
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