
 

Abstract—Medical image registration can be used for studying 

longitudinal and cross-sectional data, quantitatively monitoring 

disease progression and guiding computer assisted diagnosis and 

treatments. However, deformable registration which enables 

more precise and quantitative comparison has not been well 

developed for retinal optical coherence tomography (OCT) 

images. This paper proposes a new 3D registration approach for 

retinal OCT data called OCTRexpert. To the best of our 

knowledge, the proposed algorithm is the first full 3D registration 

approach for retinal OCT images which can be applied to 

longitudinal OCT images for both normal and serious 

pathological subjects. In this approach, a pre-processing method 

is first performed to remove eye motion artifact and then a novel 

design-detection-deformation strategy is applied for the 

registration. In the design step, a couple of features are designed 

for each voxel in the image. In the detection step, active voxels are 

selected and the point-to-point correspondences between the 

subject and template images are established. In the deformation 

step, the image is hierarchically deformed according to the 

detected correspondences in multi-resolution. The proposed 

method is evaluated on a dataset with longitudinal OCT images 

from 20 healthy subjects and 4 subjects diagnosed with serious 

Choroidal Neovascularization (CNV). Experimental results show 

that the proposed registration algorithm consistently yields 

statistically significant improvements in both Dice similarity 

coefficient and the average unsigned surface error compared with 

the other registration methods. 

 
Index Terms—Image registration, Optical coherence 

tomography (OCT), retinal image. 
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I. INTRODUCTION 

EDICAL image registration has attracted more and more 

attention due to its valuable applications in clinical 

studies [1]. In particular, registration can be used for studying 

longitudinal and cross-sectional data, quantitatively monitoring 

disease progression and guiding computer assisted diagnosis 

and treatments. Registration is a fundamental task in medical 

image processing used to match multiple images taken from 

different viewpoints, different sensors or different time points. 

In the past decades, many registration techniques have been 

developed for various types of data and applications. However, 

spectral-domain optical coherence tomography (SD-OCT) 

image registration which enables more precise and quantitative 

comparison of retinal disease has not been well developed. 

3D SD-OCT imaging technique is a noninvasive and 

non-contact scan of retina, which has been widely used in 

investigation of retinal pathology, such as Choroidal 

Neovascularization (CNV), age-related macular degeneration, 

glaucoma and so on [2]-[6].  SD-OCT acquires information 

through one dimension profile scans called A-scans. The 

A-scan is constructed by evaluating frequency spectrum of the 

interference signal between the reflected light from the tissue 

and a reference mirror. SD-OCT device acquires a single 

A-scan at a time. By acquiring a series of A-scans in a raster 

scanning pattern, the cross sectional slicer B-scan is generated. 

Composing successive B-scans yields a 3D SD-OCT image of 

retina.  Fig.1 shows a 3D SD-OCT scan of retina which consists 

of B-scan slices. Each B-scan slice consists of A-scans. Since 

SD-OCT imaging is relatively new compared with other 

medical imaging modalities such as magnetic resonance 

imaging and computed tomography, the requirement for 

processing SD-OCT images has a shorter history. With the fast 

development of SD-OCT technique, the demand for advanced 

image analysis techniques is rapidly growing. Nevertheless, the 

development of such techniques can be challenging as SD-OCT 

image is inherently noisy and the structure of retina can change 

drastically when pathology occurs. Therefore, although many 

image registration techniques have been well developed, they 

cannot be directly applied to SD-OCT images. The main 

reasons are as follows:  

1) In SD-OCT, voxels on an A-scan are highly correlated. 

For example, the presence of blood vessel in an A-scan will 

totally change the gray value of voxels below it. Furthermore, 

parallel A-scans in the OCT image actually should be fanning 

outwards from the center in physical space which depends on 
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the optics of individual's eye [7]. The geometry of retinal OCT 

image makes the deformation across different A-scans 

challenging.  

2) Eye movements during the scan process lead to significant 

spatial distortions (large gaps) between B-scans. These 

distortions make the application of existing registration 

algorithms difficult especially for interpolation and 

regularization.   

3) Serious speckle noise of OCT results in poor signal to 

noise ratio (SNR) compared with other medical imaging 

modalities. The normal intensity based registration methods 

tend to be more sensitive to the noises during the registration 

process.  

4) The layer structures of retina change dramatically in 

serious pathological regions. For example, fovea is often 

deformed by neovascularization. This makes it difficult to 

extract stable features for registration.  

5) High resolution of 3D OCT data causes dramatic increase 

of the computational complexity for registration and makes the 

clinical application difficult. 

 

 
Fig. 1.  Example of a 3D SD-OCT scan of retina. 

 

This paper proposes a new 3D registration algorithm which 

can be applied to the longitudinal retinal OCT images for both 

normal data and pathological data. Compared with other 

existing algorithms, the proposed method presents several 

contributions.  

1) To the best of our knowledge, this is the first longitudinal 

retinal OCT image deformable registration algorithm 

which considered both normal data and serious 

pathological data.   

2) It is a feature-based registration method. In this method, 

in order to depress the serious speckle noise in OCT 

images, intensity-based region feature, surface-based 

structure feature and vessel-like feature are designed to 

distinguish different structures of retina. 

3) Since the computation complexity of non-rigid registration 

is usually very high, a hierarchical deformation mechanism 

is designed to reduce local minima as well as to speed up 

the computation speed.  

II. RELATED WORK  

To develop a special registration method for retinal OCT, 

many works have been done. Most of the works are restricted to 

rigid registration [8]-[12]. However, it is not enough to describe 

the deformation of retina using such a low dimensional model. 

Therefore, a deformable registration method is quite necessary. 

To the best of our knowledge, limited deformable registration 

approaches have been reported for OCT images recently. The 

highly-rated deformable registration algorithms such as SyN 

and DRAMMS are showed to be unreliable when applied to the 

whole OCT image and they took long time (around 8-10 hours) 

to finish registration process [13]. Zheng et al. used the SyN 

registration algorithm to aid the OCT retinal layer segmentation 

[14]. Zhang et al. proposed a two-step image registration 

method to reduce speckle noise in OCT images [15]. However, 

these registration methods were applied to individual layers or 

successive B-scans instead of the whole OCT image. They are 

not a full 3D registration. Chen et al. proposed a 3D deformable 

registration method using A-scan similarity [13]. They 

considered the physical geometry of retina and assumed that the 

deformable transformation only occurred along A-scan 

direction. In their method, the position of the foveae which was 

approximated as the superior point of the thinnest portion of the 

retina was used for the initial registration. However, this 

method does not work for the data with severe lesions such as 

CNV where the fovea is no longer the thinnest portion of the 

retina. In our previous work, a two-stage registration method 

for OCT volumes with CNV was reported [16]. We used the 

projection of 2D vessel points as landmark points and applied 

the coherent point drift method followed by the B-spline-based 

registration method to find the optimal deformation. This work 

was further extended by Du and Gong et al. by using 

conditional correlation ratio instead of mutual information as 

the similarity measurement for the B-spline-based registration 

to improve the registration accuracy [17], [18]. However, these 

two methods still have some obstacles. First, their deformable 

transformation depends on the intensity similarity and is very 

sensitive to the speckle noise especially for the CNV case when 

the intensity contrast is low due to the occurrence of 

neovascularization. Second, the computation complexity is 

usually very high for such intensity-based methods.  

In this paper, we propose a feature-based 3D registration 

method which can be used for both normal retinal OCT data 

and serious pathological OCT data. Although intensity-based 

registration methods are more general, feature-based 

registration methods have several advantages compared to 

them: 1) Feature-based methods have low computational 

complexity because they evaluate a matching criterion on a 

relatively small number of feature points instead of on every 

single voxel in an image. 2) They can achieve higher 

registration accuracy because well selected features have less 

ambiguity than intensity similarity in defining correspondences. 

3) They show better robustness since the selected features can 

avoid the negative impact of image noise effectively. One of the 

typical feature-based medical image registration methods is 

HAMMER, which is successfully applied to the registration of 

brain MRI images and various other organ images [19], [20]. 

Although HAMMER achieved big success in brain image 

registration, it tends to be unreliable when directly applied to 
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3D retinal SD-OCT images. This is due to two main reasons. 

First, the structure of the retina is different from that of the 

brain. Geometric moment invariants (GMIs) can distinguish 

different geometric structures of brain, but it fails to distinguish 

the plate-like structure of retinal layers. Second, retinal 

SD-OCT images have much higher resolution than brain MRI 

images. In HAMMER, the driving voxels are selected by using 

a fuzzy clustering method. Since the fuzzy clustering method 

needs to calculate the distance between voxels, it is time 

consuming especially when the data is large and may have local 

minima. Our work is inspired by HAMMER and tries to extend 

HAMMER to OCT registration. Compared with other retinal 

OCT image registration methods, we adopt HAMMER's 

hierarchical attribute matching mechanism to improve the 

registration accuracy while reducing the computation 

complexity. Furthermore, our work presents several novel 

elements compared with HAMMER: 1) We propose to use 

intensity-based region feature, surface-based structure feature 

and vessel-like feature instead of GMI feature to distinguish 

different structures of retina. 2) We propose an efficient driving 

voxel selection method to further reduce the computation 

complexity. In our method, rather than randomly selecting the 

active voxels, the active voxels are hierarchically selected 

following a strategy for importance coefficient assignment. 3) 

A preprocessing step is designed to remove the motion 

distortion in retinal OCT data before registration. To the best of 

our knowledge, the proposed method is the first longitudinal 

retinal OCT image registration algorithm which considered 

both normal data and serious pathological data. 

III. METHODS 

A. Overview of the Approach 

The deformable transformation is a free form mapping at 

each voxel x . It can be solved by finding a transformation of 

each voxel such that the energy function is minimized. 

Considering the high resolution of OCT data, the energy 

function would be a very high dimension function which makes 

it extremely difficult to find the global optimal solution. The 

main difficulties are the computation complexity and the local 

minima problem. To speed up registration process and reduce 

local minima, a novel design-detection-deformation 

mechanism is designed. The proposed method consists of four 

steps: preprocessing, feature design, correspondence detection 

and hierarchical deformation. The overall flowchart is shown in 

Fig. 2. In preprocessing step, OCT data are first segmented by 

detecting 7 surfaces using graph search-based method and then 

B-scans are flattened to correct eye movement. In the design 

step, a couple of features are designed for each voxel in the 

image. In the detection and deformation step, active voxels are 

hierarchically selected and point-to-point correspondences 

between the subject and the template images are established. 

The image is then hierarchically deformed according to the 

detected correspondences in multi-resolution. The detail of 

each step is discussed in the following parts.  
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Fig. 2.  Flowchart of the proposed algorithm. 

  

B. Preprocessing 

1) Multi-resolution graph search: 3D graph-based optimal 

surface segmentation method can detect multiple interacting 

surfaces simultaneously [21]. The basic idea is to transform the 

optimal surface detection problem into computing a minimum 

cut in an arc-weighted directed graph. This method and its 

variations are successfully applied to retinal layer segmentation 

of macular optical coherence tomography images [22]-[31]. 

The surface segmentation methods designed for normal retinas 

can also be used to segment the retinas with glaucoma and 

multiple sclerosis or other diseases without dramatic change in 

the layer structure in the early stage. However, it is difficult to 

segment the retinas with additional layer structures such as 

sub-RPE fluid and intra-retinal cysts by using the same 

methods. In our algorithm, by considering both normal and 

serious pathological data such as CNV, the surface 

segmentation is conducted based on our previously proposed 

constrained graph search method [32]. In preprocessing, all 

B-scans of the template image and the subject image are 

segmented by seven retinal surfaces as shown in Fig.3. These 

seven surfaces partition an OCT dataset into six layers. They 

are retinal nerve fiber layer (RNFL), ganglion cell layer and 

inner plexiform layer (GCL+IPL), inner nuclear layer (INL), 

outer plexiform layer (OPL), outer nuclear layer and 

inner/outer segment layer (ONL+IS/OSL) and retinal pigment 

epithelium (RPE).  

2) B-scans flattening: Eye movement artifact occurring 

during 3D OCT scanning is a problem for retinal OCT imaging 

and makes image registration difficult. During OCT acquisition 

process, since the volume is acquired in a few seconds, eye 

movement caused by heart beat and respiration in the scan 

process results in motion artifacts. In motion distorted data, the 

positions of layers varies greatly in consecutive B-scans which 

make interpolation and regularization difficult. The position 

shifts of B-scans can be viewed in the y-z slices, as shown in 

Fig. 4 (a), where each column corresponds to a B-scan. 

Flattening the 3D OCT volumes is often used to correct eye 
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(a) 

 
(b) 

 

Fig. 3.  Retina surface segmentation result of normal eye (a) and diseased eye 

with severe lesion (b). 

 

movement artifacts and provide a more consistent retinal shape 

for visualization. In this paper, the surface segmentation results 

are used for flattening. The lowest position of surface 7 is set as 

the base position basel . For each A-scan ,i jA , the displacement 

is estimated by calculating the vertical distance ,i jz  

 

, base 7 ,i j i jz l l                                (1) 

where 7 ,i jl  is the position of surface 7 in each ,i jA . And then, 

each A-scan is shifted down in the z-direction according 

to ,i jz , such that the z positions of surface 7 become the same 

for all A-scans. The flattening process results in a smoothed 

appearance of all the layers in the y-z slice, as shown in Fig.4 

(b). The 3D rendering of surface 7 shows that the motion 

artifacts are greatly reduced after flattening. It should be noted 

that the retina has its own curvature. Since it is difficult to 

distinguish axial artifacts from retinal curvature, B-scans 

flattening method eliminates axial eye movement and the 

curvature of the retina as well. Although this is not always a bad 

thing, the curvature of retina is useful in some applications. In 

our paper, after registration, the flattened surfaces can be 

converted back to their positions to recover the original shape. 

However, we can only recover the curvature in B-scan. To 

obtain the true curvature of retina in 3D space, additional 

orthogonal volume scans are required. 

 
    (a)                                                       (b) 

 
 (c)                                                    (d)  

Fig. 4.  The y-z slice before (a) and after alignment (b) with surface7 overlaid; 

3D rendering of surface 7 before (c) and after alignment (d).  

 

C. Feature Design  

As mentioned before, feature extraction is very important for 

registration. Feature vector of each voxel in a 3D image can 

reflect the underlying local structure. A good feature set used 

for image registration does not have to be very detailed, but it 

must be robust to structural variations and invariant to image 

rotations. If the feature set is rich enough and robust enough, it 

can distinguish different parts of the anatomy. However, we 

should note that more features will not always produce better 

results if some features are ambiguous. Since SD-OCT image is 

inherently noisy and the structure of retina can drastically 

change for diseased retina, few stable and distinct features can 

be extracted for retina. In the proposed method, the following 

sets of features are designed. 

1) Surface-based structure feature: Between two regions, 

there is a surface. The voxels on the surface are more distinct 

than other voxels. According to the surface segmentation 

results in the preprocessing, value 0 is assigned to the voxels 

which are not belonging to any surface and seven real values 

between 0 and 1.0 are assigned to seven surfaces respectively to 

represent the structure information. From the top surface to the 

bottom surface, the assigned values are increased by s in turn. 

Suppose N is the total number of the segmented surfaces (here 

N=7), the surface-based structure feature can be denoted as 

n s , where n=0, 1 … N correspond to non-surface voxels and 

voxels on N surfaces, respectively. For example, let s equals 

to 0.1, then value 0.1 is assigned to the voxels on surface 1, 

value 0.2 is assigned to the voxels on surface 2, and so on. From 

the top surface to the bottom surface, the structure feature value 

is increased by 0.1in turn, and finally a value of 0.7 is assigned 

to voxels on surface 7. 

   2) Intensity- based region feature: Region features based on 

mean intensity value of each layer are designed. Since different 

intensity ranges represent different layers in retina OCT images 

[33], intensity-based feature can describe different layer 

regions. For a retinal OCT scan, the segmented surfaces 

partition the OCT volume into eight regions including six 

segmented layer regions, choroid and sclera region below 
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surface 7 and vitreous region above surface 1. The 

region-specific mean intensities are calculated for each region. 

Since close to the fovea, RNFL region is too thin to distinguish 

from inner limiting membrane (ILM). And RPE region can 

have fluid and neovascularization in CNV case. Therefore, only 

the leftmost and rightmost 20% pixels are used in the 

calculation. Then for each region, voxel intensities are 

modified according to the following intensity transformation 

function 

 

( )
( ) M Mvit

R

MRPE Mvit

I r I
I r I

I I


 


                   (2) 

where ( )MI r is the mean intensity value of region 

r . r =0,1,...7 denotes eight regions. MvitI and MRPEI denote 

the mean intensity of vitreous and RPE, respectively. The 

vitreous and RPE are specifically chosen because they are 

consistently the darkest and brightest layers in OCT scan. RI is 

the normalized intensity range which is set to 1 and ( )I r  

denotes the modified intensity of region r . As a voxel located 

on the surface between two regions, it is difficult to say whether 

it belongs to the region above or below the surface. But 

considering the consistency and stability, the surface is 

regarded as the lower surface of the upper region, and its region 

feature refers to the upper region of the surface.  

3) Vessel-like feature: Since the retinal layers in OCT image 

are plate-like structure, structure feature and region feature can 

differentiate the voxels in vertical direction. However, they 

cannot differentiate the voxels in horizontal direction. 

Therefore, vessel-like feature based on vessel shape responses 

is designed for differentiating the voxels in horizontal direction. 

According to the fact that the blood vessels produce a hyper 

intense area in the inner retina and their shadows produce a 

hypo intense area in the outer retina, vessel information can be 

extracted from the projection image of 3D OCT data. To obtain 

2D projection image, the intensity values of voxels along each 

A-scan between the upper surface of RPE layer and Bruch’s 

membrane are averaged. Segmentation of vessels in OCT 

images is much more challenging than in fundus images due to 

the speckle noise and lower resolution. Especially, in CNV case, 

sub-retinal fluid will cause non-vessel shadows which have the 

similar intensity with the blood vessels as shown in Fig.5. 

 

       
(a)                                              (b)                        

Fig. 5.  Illustration of the projection image. (a) Projection image of the normal 

eye. (b) Projection image of the diseased eye. 

 

However, they have different shapes. The blood vessels are 

generally long and thin. Therefore, the shape characteristics can 

be used to distinguish two kinds of shadows. In our method, a 

multi-scale vessel enhancement filter based on Hessian matrix 

[34] is applied to the projection image to detect tubular 

structure of vessels. A vesselness measure function is defined 

as  

 
2

2 2

2 2

0 0

( ) ( )
exp 1 exp

2 2

o B
v R S

otherwise
c


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



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       (3)                    
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F
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where 
1( )  and 

2( )  denote the eigenvalues of the 

Hessian, which are computed at scale  . For an ideal tubular 

structure in 2D image, the eigenvalues should satisfy 

1 0  and 21   . BR is the blobness measure and 

accounts for the eccentricity of the second order ellipse. S is 

the second order structureness measure. The  and с are the 

thresholds which control the sensitivity of the line filter to the 

measures BR and S . The vesselness measure is analyzed 

between min  and max  at different scales. The response of 

the line filter will be maximized at a scale that approximately 

matches the shape of the vessel. The final estimation of 

vesselness is obtained as 

 
min max

max ov v
  


 

                       (6) 

Since each pixel in the projection image corresponds to an 

A-scan, the estimation of vesselness is used as the vessel-like 

feature for the voxels in each A-scan. 

D. Correspondence Detection 

The problem of finding out the deformable transformation 

between the template image and the subject image is usually 

formulated as optimization of an energy function which 

evaluates the similarity of two images. The solution of the 

energy function directly determines the results of the 

registration. The following is the energy function used in the 

deformable registration.  
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2
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     (7) 

There are two terms in this energy function. The first term 

measures the summation of differences between template 

feature vector and subject feature vector deformed by the 

current estimation of deformation. For each voxel x  in subject 

volume SV , ( )n x denotes a neighborhood of x  for computing 
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the similarity. ( )d x defines the deformable transformation of 

voxel x . z is a neighboring voxel in the neighborhood. 

( )Sf z presents the feature vector of subject voxel z, while 

( ( ))Tf d z denotes the feature vector of the template voxel at 

position ( )d z . The function ( ( ), ( ( )))S Tm f z f d z measures 

the similarity between ( )Sf z  and ( ( ))Tf d z . ( )w z  and 

Tw are weighting parameters which assign large value to the 

voxels with distinct features such as voxels on the surfaces or 

active voxels. The second term is smoothness constraint to 

make the result deformation field smooth.
2  is Laplacian 

operator and the parameter  controls the smoothness of the 

deformation field. 

In this part, we define the criterion to choose the best 

correspondence. The similarity of two voxels x  and y  is 

defined as  

1 1

3

i=2

0 ( ) ( )

( ( ), ( ))
1- ( ) ( ) )i i

f x f y

m f x f y
f x f y otherwise




 





，

（ ，
       (8) 

where ( )if x  denotes the i-th feature value of voxel x  and i=1, 

2, 3 corresponds to the surface-based structure feature, 

intensity-based region feature and vessel-like feature, 

respectively. To find the best correspondence of voxel x , the 

similarity is calculated in a neighborhood ( )n x   centered at x  

rather than a single voxel to improve the robustness. For a 

neighboring subject voxel z, its feature vector ( )Sf z is 

compared with the feature vector ( ( ))Tf d z of the 

corresponding deformed voxel ( )d z in the template. The 

similarity is defined as ( ( ), ( ( )))S Tm f z f d z . Thereby the 

difference is 1- ( ( ), ( ( )))S Tm f z f d z . Given the weighting 

function ( )w z which is defined as 

 

10, ( ) 0
( )

1,

if f z
w z

otherwise


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

              (9) 

 

the energy function in Eq.(7) can be simplified and only the 

surface voxels in the neighborhood are used to dominate the 

correspondence detection. By using this similarity criterion, the 

subject’s boundaries can match well with the corresponding 

template boundaries. In the implementation, the size of the 

neighborhood and the search range are both defined in a 

hierarchical way. In the initial registration stage, they are large 

to deform the OCT image globally. In the later stage, they are 

hierarchically reduced to improve the accuracy of the 

registration. 

E. Hierarchical deformation  

The deformable transformation ( )d x in Eq. (7) is a free form 

mapping at each voxel x . It can be solved by finding a 

transformation of each voxel such that the energy function is 

minimized. Considering the high resolution of OCT data, the 

energy function would be a very high dimension function 

which makes it extremely difficult to find the global optimal 

solution. The main difficulties are the computation complexity 

and the local minima problem. In our method, to speed up 

registration process and reduce local minima, hierarchical 

deformation mechanism is applied. Hierarchical deformation 

mechanism approximates the multivariate energy function by a 

sequence of significantly lower dimensional energy function of 

only the selected active voxels. It allows the registration 

process focus on different sets of active voxels at different stage 

of image deformation. In the beginning of the image 

registration, only a small number of active voxels are selected 

to guide the entire deformation. With the registration 

performance, the number of active voxels is progressively 

increased.  The active voxels should satisfy the following 

conditions: 1) They should have distinct geometric 

characteristics compared with other ambiguous voxels such 

that they can provide more reliable information to the 

registration. 2) They should cover the whole structure of the 

object to guide the registration. Using the active voxel in the 

registration can alleviate the ambiguity in correspondence 

detection and thus reduce the local minima. Since the structure 

of retina is relatively simple, few distinct features can be 

extracted from 3D OCT image. However, 3D graph-based 

optimal surface segmentation provides useful surface 

information which is distinct and robust. First, voxels on the 

surface have strong boundary characteristic which are very 

different from other retinal voxels. Second, the number of 

voxels belonging to the retinal surfaces is much smaller than 

other non-retinal voxels and they can cover the whole retinal 

structure. Therefore, the retinal surface voxels are used as 

active voxels. By defining the weighting function Tw as 

 

1, active
( )

0,
T

if voxel
w x

otherwise


 


             (10) 

 

the correspondence detection can be performed only on active 

voxels and the active voxels are used to steer the registration. 

Initially, the number of active voxels is small. Then, the number 

of active voxels is progressively increased. In our method, 

active pixels are not selected randomly, but are selected 

hierarchically by assigning importance coefficients. The 

importance coefficient is assigned to each voxel following the 

criterion that the active voxels should be uniformly distributed 

in the retinal space. Otherwise, the deformation will be 

probably dominated by only one part of retina over the other 

parts.  Since from the top surface to the bottom surface, the 

surface-based structure feature 
1( )f x  is increased by s in 

turn, given N segmented surfaces (here N=7), the importance 

coefficients for each voxel can be determined as follows: 
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 If 
1 1( ) ( )f x s or f x N s    , the importance coefficient 

1
( ) ( 1)

2

N
M x s


    ; 

 If
1

1
( )

2

N
f x s


   , the importance coefficient 

1
( )

2

N
M x s


   ; 

 If 
1 1( ) ( ) ( ) (1 )f x N i s or f x i s       , 1

(1 1),
2

N
i


    the 

importance coefficient 1
( ) ( )

2

N
M x i s


   ;  

 If 
1( ) 0f x  , the importance coefficient ( ) 0M x  ; 

    

 
 

Fig. 6. Demonstration of M(x). 

 

The voxels with larger importance coefficient will join in the 

process first. As shown in Fig. 6, since surface 1 and surface 7 

are the first and last surface of the retina structure, the voxels in 

these two surfaces are assigned the largest importance 

coefficient to ensure the major structure of the subject retina 

deform to the corresponding position of the template retina in 

the initial stage. Then, the middle surface, surface 4 is added 

into the process to steer the deformation of the middle structure 

of retina. After the subject image and the template image have 

been approximately aligned, voxels on other surfaces are 

gradually added in to the registration by relaxing the 

importance coefficient selection criterion to finish the coarse to 

fine registration. Therefore, the active voxels can be gradually 

added into the deformation process by four rounds. Table I 

reports the active voxels used in each round for the image 

which consisted of 256 B-scans with 512 A-scans and 992 

pixels per A-scan. S1-S7 denotes surface1-surface7. Although 

more advanced method can be used for active voxel selection, 

we use the simple and elastic importance coefficient strategy 

to reduce the computation complexity. 

 
TABLE I 

ACTIVE VOXELS SELECTION 

 

Round Selected voxel position Total voxel no. 

1 S1, S7 262144 

2 S1, S4, S7 393216 

3 S1, S2, S4, S6, S7 655360 

4 S1, S2, S3,S4, S5,S6, S7 917504 

 

Given the determined correspondence for all the active 

voxels, the transformations of all the other voxels in the 

neighborhood are calculated from the displacement  of the 

active voxels according to a Gaussian function G(z),  

 
2

( )

( )

x z

G z e 




                                 (11) 

 

where   is a control parameter to make the Guassian function 

close to 0 for the boundary voxels in the neighborhood. The 

Gaussian function naturally describes the influence of the 

active voxels on the displacement of other neighborhood voxels, 

fading away with distance. 

In our method, to reduce the discontinuities in the total 

deformation, two smoothing techniques are used. The first one 

is the use of smooth constraint in Eq. (7). By requiring the total 

Laplacian value of displacement field to be as small as possible, 

the displacement field can be smoothed. The second smoothing 

technique uses neighboring deformation information. For 

voxel x , the final deformation at this iteration is calculated by 

averaging the deformations of its neighborhood as 

 

d( )
d( ) d( )

jj
x

x x
j


 
   
 
 

                   (12) 

where ( )jd x  is the deformation of j-th neighbor and   is a 

weighting parameter. In our implementation, we use the 

average deformation of eight neighbors around voxel x in the 

B-scan to calculate the final deformation of voxel x . 

To further speed up registration process, the multi-resolution 

framework is also applied. The original image (high-level) is 

subsampled by a factor of two and a factor of four to form 

mid-level and low-level image, respectively. The deformation 

between template and subject is first calculated in the lower 

level images and then up sampled and linearly interpolated to 

generate the initialization for the higher level.  

F. Summary  

The input parameters of this algorithm are the template 

imageT , the subject image S  and the general search range
k . 

Given T and S , different levels of the template image and 

subject image kT and kS  can be obtained by defining the level 

parameter k∈{0,1,2} corresponding to the low, middle and 

high levels, respectively. With the general search range 
k for 

level k, the algorithm can decide the best matching point in a 

certain search range by calculating the similarity of the feature 

values
kF , and determine the complete deformations 

( )k Sd x at level k. Therefore, the final output is 
2 ( )Sd x , 

which corresponds to the deformation of the subject image at 

high level. The proposed OCTRxpert registration algorithm can 

be summarized as follows: 
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OCTRexpert Algorithm ： 

1:   Input: T , S and
k ; 

2:  Segment retinal layers and correct motion distortions; 

3:  Compute feature vectors F  (c.f. Section III. C); 

4:   for k∈{0,1,2} do 

5:      Get kT , kS  and 
kF ; 

6:      for x  ∈ kS  do 

7:         Update position of x  according to the deformation 
-1( )k Sd x if 

-1( )k Sd x exists; 

8:         Assign importance coefficient for each x  (c.f. Section 

III. E); 

9:       Determine active voxels according to importance 

coefficient (c.f. Section III. E); 

10:     Correspondence detection for active voxels 

(c.f. Section III.D); 

11:     Calculate deformation for each x  (c.f. Section III.E); 

12:     Smooth and save the current deformation ( )k Sd x ; 

13:      end for 

14:   end for 

15.   Output: Save 
2 ( )Sd x as the final output; 

IV. EXPERIMENT AND RESULT 

A. Experiment Data  

To evaluate the performance of the proposed method, both 

data from normal subject eyes and data with severe lesions 

were tested in the experiments. Dataset I and dataset II are 

retinal OCT data from health people and people with serious 

CNV, respectively. OCT scans in dataset I are macula-centered 

SD-OCT scans acquired by using Topcon DRI OCT-1 scanner 

with image dimension of 512×992×256 and resolution of 

11.72×2.62×23.44 um
3
. The dataset includes 60 retinal OCT 

scans from 20 subjects, with each subject having 3 scans 

acquired in an interval of half a month. OCT scans in dataset II 

are macula-centered SD-OCT scans acquired using Zeiss 4000 

scanner with image dimension of 512×1024×128 and 

resolution of 11.74×1.96×47.24 um
3
. The dataset includes 40 

retinal OCT scans from 4 subjects with each subject having 10 

scans acquired once a month. The OCT scan from time point 1 

was selected as the template. Scans from other time points were 

registered to the selected template. This study was carried out 

following the principles of the Declaration of Helsinki and 

approved by the volunteers and patients for publication. Since 

the datasets are related to other ongoing research projects, they 

are not disclosed for the time being, but we have plans to 

disclose them after completion of the relevant research projects. 

B. Evaluation Metrics 

To quantitatively assess the accuracy of the registration 

algorithm, the Dice similarity coefficient (DSC) and the 

average unsigned surface error (AUSE) which are typically 

used as the quantitative performance metrics in OCT 

registration were calculated [35]-[37]. The first metric DSC is a 

positive performance measure, in which higher value indicates 

more accurate registration, while another metric is negative 

performance measure, in which lower value reflects more 

accurate registration. DSC for each layer between template and 

registered OCT images is calculated as follows: 

                             
2 T S

DSC
T S

l l

l

l l




                           (13) 

where DSCl
is the voxel-wise overlap ratio for retinal layer l . 

Tl
 and Sl

are the set of voxels labeled as layer l  in the 

template and the warped subjects. The overlap ratio takes the 

values between 0 and 1.0. DSCl
 of 1.0 corresponds to full 

overlap between Tl
 and Sl

, while DSCl
of 0 corresponds to 

none overlap.  AUSE is computed for each surface between the 

template and the registered OCT images by measuring the 

average absolute Euclidean distance in z-axis. The layer 

segmentation and labeling were finished manually by retinal 

specialist as the gold standard. 

C. Registration Parameter Selection  

Most parameters used in our algorithm are designed to 

evolve as the algorithm progresses. Therefore, the algorithm is 

ensured to converge in the end. For example, the search range  

xr  is designed to reduce with the increasing of iteration 

number. 
2

0.16
0.5δ e 1

ratio

k

I

xr

 
 
 
                                       (14) 

xr  is related to two parameters: 
k  (the fixed general search 

range) and ratioI  (the ratio of the current iteration number and 

the maximum iteration number). Since 
xr is defined as the 

radius of search size, it should be half of the general search 

range
k . Therefore 

k  is multiplied by 0.5. The constant 0.16 

is a control parameter which is designed to make the search 

range evolve as the algorithm progresses to ensure convergence. 

With the increasing iteration number, the search range finally 

reduced to one voxel.  The general search range 
k is large for 

low-level image to find the coarse correspondence position and 

gradually reduce for mid-level and high-level to refine the 

registration. In our implementation, 
k is estimated according 

to the retinal thickness to cover enough search area. Known the 

general retinal thickness
rT , the general search range for 

different level 
k  can be estimated by  

4
4

r
k

res

T
k

A
  

                                 (15) 

where 
resA  is the axial resolution and k=0,1,2 corresponds to 

low-level, mid-level and high-level image, respectively. 

Considering the general retinal thickness and the axial 

resolution in the experimental datasets, 0  = 24, 1 =20, and 

2 = 16 are used in our experiments. 
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(e)                                                          (f) 

   
(g)                                                        (h) 

   
(i)                                                        (j) 
 

Fig. 7. Registration result of the same slice by using HAMMER and the 

proposed method. (a) Template image from dataset I. (b) Subject image from 
dataset I. (c) Registration result of the subject image from dataset I by using the 

proposed method. (d) Checkerboard comparisons of the proposed method for 

dataset I. (e) Registration result of the subject image from dataset I by using 
HAMMER. (f) Template image from dataset II. (g) Subject image from dataset 

II. (h) Registration result of the subject image from dataset II by using the 

proposed method. (i) Checkerboard comparisons of the proposed method for 
dataset II. (j) Registration result of the subject image from dataset II by using 

HAMMER. 

  

Since the low-level image and the mid-level image were 

subsampled by the high-level image, the general search range 

24 at low-level and 20 at mid-level actually correspond to a 

search range 96 and 40 at the original image size (high-level), 

respectively. The neighborhood size of the active voxel is 

defined in the same way as
xr . 

D. Registration Performance Evaluations 

1) Registration performance of the proposed method: The 

registration results of dataset I and dataset II by using the 

proposed registration method are demonstrated in Fig. 7. In 

Fig.7, the checkerboard images of dataset I and dataset II are 

smooth which demonstrate that the subject images are well 

aligned to the template images by using the proposed method 

for both datasets. 

2) Comparison with HAMMER: Since this work is inspired 

by HAMMER, experiments were carried out to compare the 

performance of HAMMER and the proposed method. In the 

experiments, the identical set of parameters and preprocessing 

method were used for testing HAMMER and the proposed 

algorithm. Fig. 7 shows the registration results from dataset I 

and dataset II by using HAMMER and the proposed method, 

respectively. The experiment results demonstrate that although 

HAMMER algorithm works very well on various organ image 

registrations, the registration results are poor if it is directly 

used in retinal OCT images. The main reason is that although 

the use of geometric moment invariants as feature vectors can 

distinguish different geometric structures of brain, they fail to 

distinguish the horizontal structure of retinal layers. 

Furthermore, motion distortions of B-scans in SD-OCT image 

make the regular interpolation and regularization difficult. In 

the proposed algorithm, B-scans flattening method is used to 

correct eye movement artifacts and intensity-based region 

feature, surface-based structure feature and vessel-like feature 

are designed instead of GMI feature to distinguish different 

structures of retina. Table II and Table IV report the Dice 

similarity coefficient of each retinal layer and the average 

unsigned surface error by using HAMMER and the proposed 

registration method, respectively. The p-values of the Dice 

similarity coefficient and the average unsigned surface error 

from paired t-tests are shown in Table III and Table V, 

respectively. The p-values less than 0.05 indicate that the 

proposed method has statistically significantly better 

performance. The experiment results on dataset I show that 

compared with HAMMER, the DSC of the GCL+IPL layer is 

statistically indistinguishable and the DSCs of the other layers 

are statistically significantly better. The AUSEs of surface 2 

and 3 are statistically indistinguishable and the AUSEs of the 

other surfaces are statistically significantly smaller. The 

experiment results on dataset II show that compared with 

HAMMER, the DSC of the INL layer is statistically 

indistinguishable and the DSCs of the other layers are 

statistically significantly better. The AUSE of surface 3 is 

statistically indistinguishable and the AUSEs of the other 

surfaces are statistically significantly smaller. 

3) Comparison with other OCT registration method: To 

demonstrate the excellent performance of our algorithm, the 

proposed method was compared with the state-of-the-art OCT 

registration method, called conditional correlation ratio (CCR) 

method [18]. Fig. 8 shows the registration results from dataset I 

and dataset II by using CCR method and the proposed method 

respectively. The experiment results reveal that for dataset I, all  
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(a)                                                         (b) 

     
(c)                                                         (d) 

   
(e)                                                         (f) 
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Fig. 8.  Registration result of the same slice by using CCR and the proposed 

method. (a) Template image from dataset I. (b) Subject image from dataset I. (c) 

Registration result of the subject image from dataset I by using CCR. (d) 
Registration result of the subject image from dataset I by using the proposed 

method. (e) Template image from dataset II. (f) Subject image from dataset II. 

(g) Registration result of the subject image from dataset II by using CCR. (h) 
Registration result of the subject image from dataset II by using the proposed 

method. The red arrows mark the distortions after registration. 

 

the two methods achieve satisfying registration results. 

However, for dataset II, CCR method shows different 

distortions in the registration results. The main reason is that 

CCR method is intensity-based non-rigid registration method. 

Its deformable transformation depends on the intensity 

similarity and is very sensitive to the speckle noise especially 

for the CNV case when the intensity contrast is low due to the 

occurrence of neovascularization. Therefore, for the CNV 

scans in dataset II, CCR method leads to the distortions of layer 

structure. Table II and Table IV report the Dice similarity 

coefficient of each retinal layer and the average unsigned 

surface error by using CCR method and the proposed 

registration method, respectively. The p-values of the Dice 

similarity coefficient and the average unsigned surface error 

from paired t-tests are shown in Table III and Table V, 

respectively. The experiment results on dataset I show that 

compared with CCR, the DSCs of the ONL+ISL layer and RPE 

are statistically indistinguishable and the DSCs of the other 

layers are statistically significantly better. The AUSEs of 

surface 2 and 5 are statistically indistinguishable and the 

AUSEs of the other surfaces are statistically significantly 

smaller. The experiment results on dataset II show that 

compared with CCR, the DSCs of the RNFL layer and 

GCL+IPL layer are statistically indistinguishable and the DSCs 

of the other layers are statistically significantly better. The 

AUSE of surface 1 is statistically indistinguishable and the 

AUSEs of the other surfaces are statistically significantly 

smaller. The experiment results of both dataset I and dataset II 

show that the proposed registration method consistently yields 

statistically significant improvements in both DSCs and 

AUSEs compared with the state-of-the-art OCT registration 

method consistently. 
 

TABLE II 

DICE OVERLAP RATIOS OF 6 RETINAL LAYERS  

 

Dataset Layer HAMMER CCR OCTRexpert 

Dataset I 

RNFL 0.66 ± 0.23  0.87 ± 0.02 0.91 ± 0.03 

GCL+IPL 0.89 ± 0.07 0.83 ± 0.08  0.94 ± 0.02 

INL 0.8 ± 0.03 0.69 ± 0.06 0.89 ± 0.03  

OPL 0.49 ± 0.1 0.74 ± 0.08 0.85 ± 0.04 

ONL+ISL 0.76 ± 0.1 0.86 ± 0.09 0.94 ± 0.02  

RPE 0.55 ± 0.2 0.85 ± 0.22 0.97 ± 0.01 

Mean 0.69 ± 0.14 0.81 ± 0.07 0.92 ± 0.04 

Dataset II 

RNFL 0.52 ± 0.26 0.81 ± 0.11 0.78 ± 0.13 

GCL+IPL 0.67 ± 0.18 0.73 ± 0.11 0.78 ± 0.13  

INL 0.59 ± 0.19 0.48 ± 0.19 0.67 ± 0.19  

OPL 0.39 ± 0.18 0.46 ± 0.2 0.69 ± 0.16 

ONL+ISL 0.56 ± 0.23 0.78 ± 0.15 0.86 ± 0.09 

RPE 0.4 ± 0.3 0.83 ± 0.14 0.89 ± 0.08  

Mean 0.52 ± 0.11 0.68 ± 0.16 0.78 ± 0.09 

               
TABLE III 

P-VALUES OF OVERLAP RATIOS 

 

Dataset Layer 
OCTRexpert vs 

-HAMMER 

OCTRexpert vs 

CCR 

Dataset I 

RNFL 0.0038 0.0367 

GCL+IPL 0.0632 0.0183 

INL 0.0003 0.0078 

OPL 0.0001 0.0333 

ONL+ISL 0.0001 0.081 

RPE 0.0003 0.1787 

Mean 0.0113 0.0593 

Dataset II 

RNFL 0.0002 0.6305 

GCL+IPL 0.0396 0.2257 

INL 0.1422 0.0011 

OPL <<0.001 0.0016 

ONL+ISL <<0.001 0.0261 

RPE <<0.001 0.0282 

Mean 0.03 0.1522 

 

 
 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2020.2967589

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TABLE IV 

AVERAGE UNSIGNED SURFACE ERROR (UM)  

 

Dataset Surface HAMMER CCR OCTRexpert 

Dataset I 

1 10.9 ± 7.1 1.6 ± 3.3 3.3 ± 3.7 

2 7.2 ± 5.8 4.2 ± 4.1 4.5 ± 3 

3 3.9 ± 5.6 10.2 ± 7.1 4.5 ± 4.2 

4 9.4 ± 4.9 12.3 ± 13.1 2.1 ± 2.2 

5 17 ± 6.9 13.9 ± 15.7 9.2 ± 7.8 

6 19.7 ± 13.9 6.3 ± 7.6 1.5 ± 2.4 

7 25.3 ± 20.2  6 ± 9.1 0 ± 0 

Mean 13.3 ± 7.6 7.8 ± 8.6 3.3 ± 2.9 

Dataset II 

1 41.9 ± 46.5 15.4 ± 22.9 17.2 ± 14.7 

2 31.4 ± 37.8 17.6 ± 22.5 10.8 ± 8 

3 8.6 ± 8.8 25.7 ± 19.6 10.4 ± 7.7 

4 20.3 ± 22.7 26.6 ± 19.5 10.7 ± 7.5 

5 29.7 ± 40.2 27.4 ± 19.7 10.5 ± 7.7 

6 34 ± 29.9 18.7 ± 22.3 6.7 ± 5.3 

7 47.6 ± 39.5 18.9 ± 21.7 5.8 ± 5.1 

Mean 30.5 ± 32.2 21.5 ± 21.2 10.3 ± 8 

 

 
TABLE V 

P-VALUES OF AVERAGE UNSIGNED SURFACE ERRORS 

 

Dataset Surface 
OCTRexpert vs 

HAMMER 

OCTRexpert vs 

CCR  

Dataset I 

1 0.0101 0.0612 

2 0.1087 0.4979 

3 0.1315 0.0023 

4 0.0002 0.0017 

5 0.0141 0.1326 

6 0.0008 0.0007 

7 0.0012 0.0066 

Mean 0.038 0.1004 

Dataset II 

1 0.0008 0.1726 

2 0.0044 0.0027 

3 0.3054 <<0.001 

4 0.007 <<0.001 

5 0.01 <<0.001 

6 <<0.001 0.0002 

7 <<0.001 0.0001 

Mean 0.047 0.0251 
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Fig. 9.  Implementation time for different methods. 

 

4) Computation complexity: Besides the accuracy evaluation, 

the computation complexity for different methods is evaluated 

as well. The proposed method was implemented in C++ and 

tested on a PC with Intel(R) Core(TM) i7-4790 3.6GHz CPU 

and 8GB RAM.  Fig.9 shows the average implementation time 

required for each method. The retinal layer segmentation time 

is excluded. Since in CCR method, the original images are 

down sampled to the dimension of 512×512×128 during the 

registration, the average running time is the same for both 

datasets. Without the hierarchical strategy, CCR method shows 

very high computation complexity for the two datasets. By 

using HAMMER method or OCTRexpert method with the 

hierarchical strategy, the registration computation complexity 

is greatly reduced. For the OCT image which consisted of 256 

B-scans with 512 A-scans and 992 pixels per A-scan, without 

the hierarchical strategy, more than 130 million voxels have to 

be matched during the registration process. The computation 

complexity is extremely high and there exist many ambiguous 

voxels which may mislead the deformation. By using the 

hierarchical strategy, the number of the voxels is reduced to 

around 260000 in the beginning of iteration, and then, gradually 

increased to approximately 900000 in the end. Between 

HAMMER method and OCTRexpert method, OCTRexpert 

achieves lower computation complexity. The main reason is 

that in HAMMER, the driving voxels are selected by using a 

fuzzy clustering method. Since the fuzzy clustering method 

needs to calculate the distance between voxels, it is time 

consuming especially when the data is large. In our method, we 

use the efficient driving voxel selection method instead of 

fuzzy clustering method. Therefore, the computation 

complexity is further reduced and the computation time of our 

method is very competitive. 

V. CONCLUSION AND DISCUSSION 

This paper proposed a retinal OCT image registration 

approach called OCTRexpert which can be applied to the 

longitudinal SD-OCT images for both normal and severe 

lesions subjects. In the proposed method, a novel 

design-detection-deformation mechanism is designed. 

According to the segmented 7 retinal surfaces, intensity-based 

region feature, surface-based structure feature and vessel-like 

feature are designed for the registration. To speed up 

registration process and reduce local minima, a hierarchical 

strategy is also applied. Active voxels are hierarchically 

selected and the point-to-point correspondences between the 

subject and the template images are established. The image is 

then hierarchically deformed according to the detected 

correspondences in multi-resolution. The experiment results on 

both healthy OCT dataset and CNV OCT dataset demonstrate 

that the OCTRexpert registration algorithm overcomes the 

shortcomings of existing registration methods and consistently 

yields high registration accuracy.  The computation complexity 

experiments also show the efficiency of the proposed method. 

Furthermore, the proposed algorithm can also be extended to 

other pathological cases such as glaucoma, diabetic macular 

edema and central serous chorioretinopathy. It should be noted 

that the accuracy of the proposed registration algorithm is 

affected by the segmentation accuracy. For segmentation errors, 

we also designed strategies to mitigate this issue. 1) To find the 

best correspondence of a voxel, the similarity is calculated in 

a neighborhood rather than a single voxel to improve the 

robustness. Therefore, even if segmentation fails for one layer, 

pixels on other layer surfaces in the neighborhood can correct 

this error. 2) The correspondence detection is not only decided 

by the segmentation result but also by the intensity and the 

vessel information. Segmentation error will change the 

intensity-based feature and reduce the correspondence 
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similarity during the registration, thus reduce the sensitivity to 

segmentation errors. By using OCTRexpert, we can achieve a 

powerful registration for retinal OCT images where the 

superior performances were demonstrated. 

The success of the proposed algorithm is achieved by 

overcoming the following challenges during the registration of 

retinal OCT images：1) The large gap between B-scans caused 

by eye movement during the scan process makes it difficult for 

interpolation and regularization. To correct the eye movement 

artifacts, B-scan flattening is used in our pre-processing step. 2) 

Normal intensity-based registration methods tend to be 

sensitive to the serious speckle noises in OCT images. To 

overcome this problem, we apply a feature-based registration 

method. Three kinds of features are designed to drive the 

registration. 3) High resolution of OCT data compared with 

other medical imaging modalities causes dramatic increase of 

computation complexity for registration. We propose two 

solutions to speed up the registration process. One is the use of 

active voxels. The deformation mechanism focuses on different 

sets of active voxels at different stage of deformation. The 

number of active voxels is initially small and progressively 

increases with the registration process. The other solution is the 

use of multi-resolution framework. The deformation between 

template and subject is first calculated in the lower resolution 

and then up-sampled and linearly interpolated to generate the 

initialization for the next resolution. 

Although OCTRexpert overcomes these challenges and 

shows significant improvements, it still has some limitations: 1) 

Inconsistent correspondence between the subject and template 

images is a common limitation for most registration algorithms. 

In retinal OCT, it always happens in pathological regions. The 

disrupted or missing layers maybe appear due to pathology 

(detachment, edema, etc.). In such case, OCTRexpert is 

designed to relax the matching forces when no matches are 

found. However, further development will be necessary to 

estimate the transformation in these regions. 2) OCTRexpert is 

a feature-based registration algorithm. The registration result 

highly depends on the accuracy and robustness of the features. 

For example, the deformable registration relies on the surface 

information obtained from the surface segmentation. The 

segmentation accuracy will directly affect the accuracy of the 

registration. Although, the multi-resolution graph search 

segmentation results are generally found accurate and robust in 

our experiment, automatic accurate surface segmentation is not 

easy for pathological region with dramatic change in the layer 

structure. Recent works extend deep learning technique to solve 

complex medical image segmentation problem [38]-[40]. For 

example, retinal blood segmentation problem [41], pathologic 

OCT image layer boundary segmentation problem [42], 

choroidal neovascularization segmentation problem [43], 

segmentation of optic disk in fundus images, fluid in retinal 

optical coherence tomography images and fetal head in 

ultrasound images [44], etc. Deep neural networks also 

achieved great success in image recognition and analysis. For 

example, unsupervised image features learning for lung nodule 

[45], skin disease recognition [46] and lung mass density 

analysis [47], etc.  In the near future, we will focus on the 

registration techniques of pathological data and consider using 

deep learning to learn features and improve the segmentation 

results of retinal vessels and layers. With the improved 

segmentation results of retinal vessels and layers, the 

registration accuracy can be further improved. Furthermore, we 

are going to optimize the codes to obtain additional speeding up 

to make the reported approach more suitable for clinical 

practice in the future. 
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