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Abstract— Accurate lung tumor delineation plays an important
role in radiotherapy treatment planning. Since the lung tumor
has poor boundary in positron emission tomography (PET)
images and low contrast in computed tomography (CT) images,
segmentation of tumor in the PET and CT images is a challenging
task. In this paper, we effectively integrate the two modalities
by making fully use of the superior contrast of PET images
and superior spatial resolution of CT images. Random walk
and graph cut method is integrated to solve the segmentation
problem, in which random walk is utilized as an initialization
tool to provide object seeds for graph cut segmentation on the
PET and CT images. The co-segmentation problem is formulated
as an energy minimization problem which is solved by max-flow/
min-cut method. A graph, including two sub-graphs and a special
link, is constructed, in which one sub-graph is for the PET and
another is for CT, and the special link encodes a context term
which penalizes the difference of the tumor segmentation on the
two modalities. To fully utilize the characteristics of PET and
CT images, a novel energy representation is devised. For the
PET, a downhill cost and a 3D derivative cost are proposed.
For the CT, a shape penalty cost is integrated into the energy
function which helps to constrain the tumor region during the
segmentation. We validate our algorithm on a data set which
consists of 18 PET-CT images. The experimental results indicate
that the proposed method is superior to the graph cut method
solely using the PET or CT is more accurate compared with the
random walk method, random walk co-segmentation method,
and non-improved graph cut method.

Index Terms— Image segmentation, interactive segmentation,
graph cut, random walk, prior information, lung tumor, positron
emission tomography (PET), computed tomography (CT).
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I. INTRODUCTION

LUNG CANCER is the leading cause of cancer-related
deaths worldwide in both men and women [1]. The

combination of chemotherapy and radiotherapy is a commonly
recommended standard curative approach in non-small cell
lung cancer (NSCLC) which is a major kind of lung cancer [2].
Currently, preoperative imaging is recommended for the malig-
nancy grade of non-invasive lung tumors before treatments are
provided [3]–[5]. 18F-deoxyglucose (FDG) uptake is related
to many biological processes, including glucose metabolism
and hypoxia [6]. Therefore, FDG Positron Emission Tomog-
raphy (PET) is often used to stage NSCLC in clinic [7].
However, it is a non-trivial task for cancer assessment and
treatment planning, due to the variability and diversity of med-
ical images [8], [9]. In PET images, the diseased areas, such as
tumor and inflammation, appear as ‘hot’ areas reflecting high
contrast to the normal surrounding tissues. The high contrast
in PET images makes it easy to distinguish the malignant
areas from the normal tissues and gives the observer a distinct
visualization which reduces the observer variability [10]. How-
ever, due to the low spatial resolution of PET [11], the target
boundary definition is poor and fuzzy [see Fig.1(a)]. Thus,
accurate tumor segmentation using PET only is problematic.
Computed Tomography (CT) images have high spatial resolu-
tion and provide detailed anatomical information, yet lacking
metabolic information. Lack of physiological information in
CT makes it difficult to distinguish between the lesion and the
normal tissues because the tumor intensity is similar to the
surrounding tissues [12] [see Fig.1(b)]. With the introduction
of multi-modality imaging technologies, integrated PET/CT
scanners can provide co-registered FDG-PET and CT images,
make it possible to acquire both anatomic and functional
images of the whole patient in one single procedure [13].
Many studies indicated that the combination of PET and CT
images produce a more consistent tumor volumes [14]–[16].
Therefore, PET-CT gained a lot of attention in the field of
both clinic and image processing and has become a standard
method for tumor delineation and cancer assessment [17].

Although PET-CT images have been widely used in clinic,
automatic segmentation on PET-CT images is still a challeng-
ing task. The existing methods working for PET-CT [18]–[21]
have an underlying assumption that the tumor volume is
identical on PET and CT, attempting to get one tumor con-
tour from PET and CT two modalities. However, as PET
and CT convey different information, which is not always
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Fig. 1. PET and CT images. (a) One slice of a CT image. (b) The
corresponding PET image.

complementary, but sometimes contradictory, the tumor vol-
ume may be different on PET and CT [22]. In this work,
we strive to segment tumor volumes simultaneously by taking
the advantages from two modalities, the superior contrast of
PET images and superior spatial resolution of CT images
and get two different tumor volumes. Our method is based
on Boykov’s graph cut method [23]–[27] and Leo Grady’s
random walk method [28], [29]. Both of the methods treat
the image as a graph and minimize energy functions on the
constructed graph to produce an optimal segmentation. In both
methods, a weighted graph is constructed. Nodes of the graph
correspond to voxels in image and edges are placed between
nearby voxels [30]. The edge weights are determined by the
image intensity. We incorporate the two methods together by
utilizing random walk as an initial preprocessor and graph
cut as a co-segmentation problem solver. Random walk is
utilized to provide initial lesion detection on PET, which
will be used as object seed sets for PET and CT, and also
as an initial shape prior for tumors in CT images. The co-
segmentation problem is formulated as an energy minimization
problem. As a graph-based method, the performance of the
graph cut method is determined by the energy function. We
proposed a novel energy function which is well adjusted
to the characteristic of PET and CT images. The energy
function for both PET and CT segmentation has two terms,
region term and boundary term. For PET, the region cost
consists of three different kinds of feature extracted from
PET images, a data term based on the SUV distribution,
a downhill feature and a three-dimensional (3D) derivate fea-
ture. The SUV distribution feature helps to solve the problem
of heterogeneity in PET images. The downhill feature based on
the analysis of tumor characteristics in PET would help extract
the ambiguous area of tumors, which has a similar intensity
distribution to non-tumor regions such as heart and liver. The
3D derivative feature which is formulated using the Hessian
matrix combined with Gaussian functions is able to enhance

the tumor objects. For CT segmentation, the region term is
the incorporation of a data cost function and a shape penalty
term, which utilizes shape prior information to limit the tumor
area. The boundary term for both PET and CT segmentation
is based on the gradient information of the images. To get
consistent results between PET and CT, a context term which
penalizes the difference between them is added to the energy.
The solution with respect to energy function minimization will
be achieved in a polynomial time by computing maximum flow
in the constructed graph [25].

The rest of the paper is organized as follows. In section II,
we give a brief review on tumor segmentation using PET and
CT images and characterize the novelties of our approach.
In section III, we describe the framework of our method and
give the details about each part, including the description
of the energy function design. Section IV gives the detailed
description of the experiments and presents the experimental
results. Finally, in section V, we draw the conclusion and
section VI gives the discussion of our work and the future
improvements.

II. RELATED WORK

PET images have been actively in use for tumor delineation
in clinical radiotherapy applications due to their high contrast
to non-tumor tissues. In the literature, SUV thresholding was
widely used. Erdi et al. applied a fixed threshold value of
36%–44% of the maximum SUV derived from the phantom
experiments to PET images in order to determine the regions
of primary or metastatic lung lesions [31]. In their phantom
study on moving tumors, Caldwell et al. also used a threshold
of 15% of the maximum in order to detect the true extension of
the target volume [32]. Drever et al. also proposed a threshold
segmentation method based on local contrast to accurately
delineate PET target cross sections using well-defined cylin-
drical and spherical volumes [33]. Then, they also carried
out a phantom study employing spherical targets to deter-
mine local threshold value between target and background,
and fit functions to this data in order to construct a local
contrast based iterative threshold segmentation algorithm [34].
Jentzen et al. also proposed an iterative thresholding method
which had good performance in dealing with indistinct nature
of tumor boundary have been extensively developed [35].
Brambilla et al. used multiple linear regression models to
study the dependence of the percentage threshold used to
define the boundaries of FDG positive tissue on emission scan
duration and activity at the start of acquisition or different tar-
get sizes and target-to-background ratios [36] Nehmeh et al.
developed an iterative method based on Monte Carlo to
determine the optimum threshold value [37]. Similar to the
thresholding methods, some features derived from SUV were
introduced. Wong et al. used shape and magnitude to classify
a number of time-activity curves (TACs) into a smaller number
of distinct characteristic classes that are mutually exclusive so
that the tissue TACs within a cluster are similar to one another
but are dissimilar to those drawn from other clusters [38].
Geets et al. computed the gradient intensity of each voxel
in PET images, and then detected crest using watershed
transform. In order to obtain final tumor segmentation, they
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used a hierarchical clustering algorithm by constructing a
dissimilarity dendrogram and collecting all patches/watersheds
sharing a similar activity level [39] Wanet et al. also used
a gradient-based approach for denoised and deblurred PET
images and fixed and adaptive thresholding method to compute
gross target volume (GTV) [40]. Besides, additional features
were also incorporated. Spatial information related to the
voxel position in the PET data in a flexible manner was
obtained from anisotropic diffusion filtering such that fuzzy
C-means FCM clustering algorithm can be optimized [41].
In [42], horizontal, vertical, and diagonal features for each
slice were produced using Haar wavelet transform and were
used in artificial neural network for classifying and quantifying
tumors. Texture-based features were also introduced to reflect
the underlying spatial variation and heterogeneity of voxel
intensities within tumors [43]–[45]. More complex methods
were developed and applied to lung tumor segmentation in
PET images. Guan et al. proposed a body-section labeling
method based on spatial Hidden-Markov Models (HMM) and
combined a competition diffusion segmentation algorithm and
a recursive intensity mode seeking algorithm to detect tumor
hotspot region [46] Montgomery et al. introduced expecta-
tion maximization based mixture modeling using a k-means
clustering method, and then used a multiscale Markov model
to refine segmentation automatically [47]. The distribution
of SUV in a PET image was expressed as a mixture of
Gaussian densities representing different classes to obtain the
tumor volume with user interaction [48]. Ballangan et al.
employed the relationship between SUV and its gradient
magnitude to formulate tumor-customized downhill model and
used a tumor-customized downhill algorithm to detect tumor
boundary [49] Dewalle-Vignion et al. integrated the maximum
intensity projection algorithm to handle consistent information
from high PET images and developed a fuzzy set theory-
based algorithm to utilize uncertainty between healthy tissues
and tumors [50] Recently, graph based methods have attracted
a lot of attention due to their good performance in image
segmentation. Bagci et al. demonstrated the effectiveness of
segmenting lung tumor on PET images using random walk
algorithm [51]. Cherry et al. showed how to extract heart,
liver and regions effectively which have similar uptake value
to lesions by merging a novel monotonic downhill function
with the conventional graph cut energy regularization [52].

Apart from the detection of pulmonary lesions in PET
images described above, many researchers also tried to detect
pulmonary nodules in CT images due to the nature of the CT
scanners. Kuhnigk et al. initially performed a region growing
algorithm with a fixed lower threshold starting from the
seed point. Then, they combined a morphological opening
operation based on automated determination of an optimal
erosion strength and a chest wall separation procedure [53],
In Wu’s work [54], they used a conditional random field
model incorporating texture features, gray-level, shape, and
edge cues to segment lung nodules. Tao et al. presented a
multi-level statistical learning-based framework for automatic
detection and segmentation of ground glass nodules in lung
CT images [55]. Gu et al. developed a single click ensemble
segmentation approach [56].

However, these methods only conducted on single modal-
ity. Due to physically limited spatial resolution and lack of
anatomical information in PET images while low contrast in
CT images, many developers recently attempted to integrate
PET and CT images, striving to achieve more precise lesion
detection and delineation. Erdi et al. used a semi-automatic
method to analyze lung tumors. They delineated prospectively
planning target volume (PTV), gross target volume (GTV)
and normal organs in CT images. The PTV and GTV were
then modified using the registered PET emission images [10].
Jafar et al. used an iterative optimal thresholding algorithm to
extract the lungs out of the whole-body in PET/CT images and
applied multiple thresholding procedure with volume criterion
to detect the tumors according to the PET/CT volumes in
equally spaced gray levels [57] Ballangan et al. used a fixed
threshold based region growing for initial lung segmentation,
and then aligned the healthy lung template to the patient
image volumes to lung and tumors [58]. Guo et al. used a
joint posterior probability distribution of observed features in
the fuzzy MRF model to segment lung tumors from PET-CT
images [59]. Bagci et al. proposed an automatic random-walk-
based segmentation method combining PET, CT and MRI
modalities by the hyper graph construction [18]. Han et al.
developed an optimal graph-based co-segmentation method
with the establishment of an arbitration graph mechanism,
encoding the characterized information of PET and CT images
and the context information between them [20]. Based on
Han’s method, Song et al. reduced the size of the constructed
graph in Han’s paper from three sub-graphs to two and tried
to obtain two different tumor contours on PET and CT [22].

Our work is motivated by Song’s method [22]. We both for-
mulate the co-segmentation problem as a labeling of Markov
Random Field (MRF) on the constructed graph with PET and
CT images. Compared to Song’s method, the innovation in our
work is the combination of random walk and graph cut and
the introduction of a novel energy representation. The random
walk technique is utilized to provide initial hot spot detection
which is treated as object seed points required by graph cut. As
we know, the graph cut algorithm has small cut and shrinking
problem in noisy images if a small number of seeds are
used. The prior tumor appearance provided by random walk
can avoid the small cut problem happening and reduce the
user’s intervention. Since random walk is more efficacious
in handling ambiguities among object boundaries, the initial
detection by random walk will capture weak boundaries of
the target regions. Moreover, the downhill term which is
integrated into the PET energy function has great contributions
to producing accurate lesion segmentation from PET images.
The downhill term helps to identify the location of the tumor
and extract the ambiguous area which has similar intensity
to the tumor. The 3D derivative feature enhances the tumor
structures and weakens the background field.

III. METHODS

Our proposed algorithm is based on two graph-based meth-
ods, random walk (RW) and graph cut (GC). Random walk
is an initial preprocessor for PET, providing basic tumor
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Fig. 2. Flowchart of the algorithm.

appearance which is used as object seed points for PET and
CT. Then the task of simultaneous segmentation is formulated
as an energy minimization problem on graphs corresponding
to PET and CT images. The graph is constructed involving
two sub-graphs, one for PET and one for CT. Inter-graph arcs
called d-link are added to connect correspondent nodes of the
two sub-graphs. For each sub-graph, a novel energy expression
is designed. The inter-graph arcs enforce context information
between PET and CT, enabling target contours to follow salient
features of each modality [22].

The flowchart of the proposed algorithm is shown in Fig.2.
First, anatomical and functional image are filtered by gradient
anisotropic diffusion filter which is used to smooth images
but preserve the edge. Then random walk is conducted on
PET images and the initial results are obtained. Downhill
region is detected on PET images and the area outside the
downhill region is used as background seed set for CT
segmentation. PET energy and CT energy and context cost
is computed, encoded on the constructed graph. The entire
energy is minimized by solving a max-flow/min-cut problem
in the constructed graph in a polynomial time [25].

A. Pre-Processing

In the preprocessing step, PET images are registered and
upsampled using a linear interpolator to obtain one-to-one

voxel correspondence between the CT images. As random
walk is an interactive method, the object and background seeds
are needed for guidance of the desired content to be extracted.
In this work, seeds are selected from the tumor region by
simulating Monte-Carlo. The seed number is set as five on
each slice with tumor.

B. Random Walk for Tumor Segmentation on PET Images

Random walk is a graph-based segmentation approach.
In this section, we give a detailed introduction of random walk.

Assume a graph G is connected and undirected, we rep-
resent graph G as G = (V , E) with vertices v ∈ V and
edges e ∈ V × V. ei j is an edge connecting node vi and
its neighborhood v j with a weight wij . The vertices in the
graph can be divided into two sets, VM and VU , such that
VM ∪ VU = V and VM ∩ VU = ∅. VM is a labeling seed set
which is defined by users and VU contains all unknown nodes.
The segmentation problem is to find appropriate labeling for
the unknown nodes. A weighting function maps a change in
image intensity to edge weight corresponding to the likelihood
that a random walker will cross that edge. The weighting
function we employed is the typical Gaussian function derived
from the suggestion in (Grady, 2006) [28].

wij = exp(−β(gi − g j )
2), (1)

where gi indicates the intensity at voxel i , the value β rep-
resents weighting parameter. It has been demonstrated previ-
ously that the desired probabilities the random walker passing
through the edge has the same solution as the combinatorial
Dirichlet problem [28]. The formulation of Dirichlet integral
is stated as:

D [x] = 1

2
x T Lx = 1

2

∑

ei j ∈E

wij
(
xi − x j

)2
, (2)

where x denotes the probability at each voxel, L represents
the combinatorial Laplacian matrix. The matrix L is defined
as

Li j =

⎧
⎪⎨

⎪⎩

di i f i = j,

−wij i f vi and vi are adjacent nodes,

0 otherwi se

(3)

where Li j is indexed by vertices vi and v j , di is the degree of
a vertex for all edges ei j incident on vi and has the definition
as: di = ∑

w(ei j ).
After the probability x at each voxel is obtained, a threshold

is set to segment the tumor from the image. If the probability
of one voxel is larger than the threshold, it belongs to the
tumor. Otherwise, it belongs to the background. And we
use morphological operations of erosion followed by dilation
approaches to deal with the isolated voxels. The segmentation
results obtained from the random walk method are used as
the foreground seeds for graph cut method and also as shape
prior information for the shape penalty function term in the
CT energy function.
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Fig. 3. The constructed graph with two sub-graphs GPET and GCT and
d-link arcs encoding the context penalties.

C. Graph Cut for Co-Segmentation of Tumor
on PET-CT Images

In this section, we will introduce how to segment tumor con-
currently on PET and CT images using graph cut technique.
The rationale is to formulate the segmentation problem as
finding the labeling by energy minimization. The foreground
seeds are derived from the initial lesion appearance detected
by random walk and the feature of tumor adjusted to the PET
energy function will help to identify the background regions.
The solution will be achieved by solving a maximum flow
problem in low-order polynomial time [25].

1) Graph Construction: Two sub-graphs G P ET for PET,
GCT for CT, and a connector which is called d-link constitutes
the whole graph. The graph is shown in Fig.3. For each voxel
u ∈ G P ET , u′ ∈ GCT is the corresponding voxel in CT. The
intensity value for voxel u(u′) is noted by gu (gu′). Label f
indicates that the voxel belongs to the target object ( f = 1)
or to the background ( f = 0). Each sub-graph containsn-links
and t-links, encoding the neighboring costs and regional costs.
For PET segmentation, the energy function E P ET has a region
cost and a smoothness cost. For the segmentation of CT, the
energy term ECT has the same ingredient for that in PET. d-
links are additional inter-graph arcs which connect the voxels
u in G P ET and the corresponding u′ in GCT , enforcing the
context information between PET and CT. The context cost
Econtext penalizes the inconsistence segmentation between PET
and CT. The total cost function is defined in the following way.

E ( f ) = E P ET ( f ) + ECT ( f ) + Econtext( f ), (4)

The co-segmentation is done on a full 3D volume. Our goal
is to minimize the energy such that the optimal segmentation
of PET-CT images is attained.

2) Cost Function for PET: To introduce our energy func-
tion, we start with the expression of PET cost function. The
cost has a region term which consists of a SUV cost, a
downhill cost, a 3D derivative cost and a boundary term. The
SUV term Ru( fu) is based on the SUV distribution of PET
images. The downhill term Du( fu) is adjusted to the downhill
feature of tumor on PET and the 3D derivative cost Fu ( fu)
utilizes the derivative feature of PET images. The boundary

term Buv ( fu , fv) is based on the gradient information of the
image. The energy function for the segmentation of PET is
defined as follows.

E P ET ( f ) =
∑

u∈G P ET

λ1 · (Ru ( fu) + Fu ( fu) + Du ( fu))

+
∑

(u,v)∈NP ET

λ2 Buv ( fu , fv) , (5)

where NP ET denotes the neighboring relationship between
voxels in PET graph G P ET . λ1, λ2 is the scaling constant
which maintains the role of the region term and the boundary
term. The detailed definition of each function term is presented
as follows.

a) Data term: The region term Ru( fu) is the likelihood
assigning label fu to the voxel u. Instead of user identifying
object seeds manually, the pre-segmented tumor appearance
(which is conducted by random walk) is considered as target
regions desired to be segmented. Therefore, for every voxel
inside the target regions, Ru( fu = 1) = 0 and Ru( fu = 0) =
+∞. In this paper, there is no need to define the background
seed sets for PET segmentation because a downhill cost we
defined is able to extract the ambiguous area which has the
similar SUV to the tumor. For the spheres outside the initially
identified region, it is important to note that the tumor may
contain regions of necrosis or cystic change such that FDG
uptake throughout the tumor is heterogeneous. To solve the
problem of heterogeneity, the cost function based on the prior
knowledge and the feature of SUV distribution of tumor is
designed. Based on prior knowledge, it is highly possible
that the voxels having SUV higher than 50% of maximum
SUV belong to the tumor. We denote SM AX the maximum
SUV [60]. For every voxel with a lower value than 15% of
SM AX , it is more likely belonging to the background. The
function is defined as:

Ru ( fu = 1)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Tmax i f S (u) < SL

Tmax · (1 − 1

1 + exp(−(S (u) − SL
SH

−SL−ϕ)/γ )/γ )
)

i f SL < S (u) < SH

0 i f S (u) > SH ,

(6)

Ru ( fu = 0) = Tmax − Ru ( fu = 1), (7)

where Tmax is the maximum region cost allowed;
SH = 50% · SM AX and SL = 15% · SM AX are the higher
and lower threshold value. γ is the parameter controlling
the curvature of the function. ϕ controls the center point
of the function. We employ the function instead of the
linear function because it is monotonically increasing, more
versatile and more robust to the heterogeneity.

b) 3D Derivative feature: The basic idea of the 3D
derivative cost is to characterize the tumor based not only
on its intensity values but also its local intensity structures.
Therefore we design the 3D derivative cost which is based
on the gradient vector and Hessian matrix of the volume
intensity function combined with isotropic Gaussian functions
to enhance the tumor structures [61]. The target lesion object
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can be regarded as blob-like structures. So the derivative cost is
devised to enhance the local blob-like structures and eliminate
the ambiguous areas.

Let g(x) be an intensity function of an image, x = (x, y, z).
The second-order approximation of g(x) around x0 can be
formulated as follows:

gI I (x) = g (x0) + (x − x0)
T ∇g0

+1

2
(x − x0)

T ∇2g0 (x − x0), (8)

where g(x0), ∇g0 and ∇2g0 represent the original image
intensity, the gradient vector and the Hessian matrix at x0.

The gradient vector is defined as:

∇g = (
gx, gy, gz

)
, (9)

where the partial derivatives of g(x) are represented as
gx = ∂g

∂x , gy = ∂g
∂y gz = ∂g

∂z . And gradient magnitude is

given by |∇g| =
√

g2
x + g2

y + g2
z . g and |∇g| are two intuitive

feature measurements of 3D local intensity structures which
representing the intensity and the edge length of the 3D
structures.

The Hessian matrix is given by

∇2g =
⎡

⎣
gx x gxy gxz

gyx gyy gyz

gzx gzy gzz

⎤

⎦, (10)

where the partial second-order differentiation is interpreted as
a convolution with derivatives of Gaussians [61]:

gx x = ∂

∂x

(
σδ

1 g (x) ∗ ∂

∂x
G (x, σ1)

)
, (11)

G (x, σ1) = 1√
2πσ 2

1

e
− ‖x‖2

2σ2
1 , (12)

where σ1 is a Gaussian parameter which controls the response
of the derivative function to the specific local tumor structures
and δ is a parameter. Since the tumor is anomalous, tumor
structures can exist at various scales. In order to make filter
responses tunable to a width of interest, the Hessian matrix
is combined with Gaussian convolution. By adjusting the
standard deviation of Gaussian convolution, local structures
with a specific range of widths can be enhanced. The filter
responses decrease as σ1 increases unless appropriate normal-
ization is performed. Let the eigenvalues of ∇2g be α1, α2, α3
(α1 ≤ α2 ≤ α3 ≤ 0). These eigenvalues are combined and
associated with the intuitive measures g and |∇g|. The tumor
structure can be identified by using the eigenvalues |α1| which
gives the maximum second-derivative value measuring the
similarity to the tumor structures. The 3D derivative cost is
defined as follows.

Fu = |α1| · Tmax, (13)

where Tmax is the maximum region cost allowed.

Fig. 4. One example slice of a downhill region image (a) original PET
image (b) downhill region image overlaid on the original PET image. The
curve in red is detected by the downhill function which shows that the feature
effectively extracted the spine field which has a similar intensity to the tumor.

c) Downhill term: The proposed novel downhill cost
which is integrated into the energy function is based on the
analysis of tumor activity on PET. On PET images, the lesions
with high metabolism have high uptake, so the tumor is clearly
identified. However, the transition from the tumor SUV to the
background SUV is gradual. Thus, the SUV of a homogeneous
tumor is considered as 3D decreasing monotonically [49].
It means that within the tumor region, the further a voxel from
the maximum intensity site of the tumor, the lower the SUV.
So if a voxel has a high SUV and the distance to the maximum
point is within the limited scale, the possibility that it belongs
to the tumor region is higher. The algorithm of the downhill
term is described in Algorithm 1.

Therefore, the downhill region has the following
formulation:

VD =
{

u| i f SU V (u) > μSU V max and d < d0
d0 = ‖xu − xmax‖ i f SU V (u) < μSU V max

}
,

(14)

where xmax is the coordinate of the voxel with maximum SUV
within the tumor domain, xu, the coordinate of a voxel u. ‖·‖
is the Euclidean distance. μ is a parameter which controls the
threshold value and limits the growth of the downhill region.
VD is the region which is detected by the downhill formulation.

The downhill cost is as follows:

Du =
{

0 u ∈ VD

Tmax otherwise,
(15)

where Tmax is the maximum region cost allowed.
Another advantage of the downhill region detection is

that the voxels in the exterior of the downhill region can
be considered as background seeds for CT segmentation.
Fig.4(b) shows one slice with the detected downhill region.
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Algorithm 1 Downhill Region Detection

Fig.5(a) shows an example slice of the cost image for region
term in PET image.

d) Boundary term: The boundary term measures the
penalty of assigning different labels to the neighboring voxels
u and v. We employ a gradient-based cost which has a similar
form as the well-known graph cut method [23]. The boundary
cost is described as following:

Buv = − log

(
1 − exp

(
− |∇G P ET |2 (u, v)

2σ 2
g

))
, (16)

where |∇G P ET |2(u, v) denotes the squared gradient magni-
tude between u and v, σg is a given Gaussian parameter.

3) Cost Function for CT: The energy function for CT
comprises a data term Ru′( fu′), a shape penalty term Su′( fu′)
and a boundary term Bu′v′( fu′ , fv′ ). The data term and the
boundary term are derived from conventional graph cut energy
term. The shape term is independent of image information.
CT energy function has the following formulation.

ECT ( f ) =
∑

u′∈GCT

λ3(Ru′ ( fu′ ) + Su′( fu′))

+
∑

(u′,v′)∈NCT

λ4 Bu′v′ ( fu′ , fv′), (17)

where λ3, λ4 is the scaling constant which maintains the role
of the region cost, the shape term and the boundary term.

a) Data term: The hard region cost has the same
form as that defined for PET. If voxel u′ is in the inte-
rior of the pre-defined tumor region, Ru′( fu′ = 1) = 0
and Ru′( fu′ = 0) = +∞. The background seed set is deter-
mined by the exterior area of the downhill region which we
introduce in Section III-C-2-c. Similarly, Ru′( fu′ = 0) = 0
and Ru′( fu′ = 1) = +∞ are defined for every voxel in

Fig. 5. One example slice of a cost image for region term in (a) PET image
(b) CT image.

the background set. For the area outside the background and
foreground fields, the intensity distribution of CT image is
assumed as the Gaussian Mixture Model [23]. Instead of being
hard constraints, object seed sets are also used to compute the
parameters of the Gaussian model. The mean intensity values
of all voxels in pre-defined object are denoted by g and the
corresponding standard deviation is σ .

Ru′ ( fu′ = 1) = − log P (gu′ | fu′ = 1) ∝ (gu′ − g)

σ 2 , (18)

Ru′ ( fu′ = 0) = − log P (gu′ | fu′ = 0)

∝ −log(1 − ex p(
−(gu′ − g)2

σ 2 )), (19)

b) Shape term: The shape term is independent of image
information [62], [63]. The region recognized by random walk
is used as the shape prior to locate the tumor site. The distance
from the current voxel to the model region is calculated and
is considered as the penalty of assigning label f = 1 to voxel,
the larger the distance, the larger the cost. The shape constraint
function has the following form.

Su′ ( fu′) = 1 − exp

(
−d

(
u′, xO

)

rO

)
, (20)

where d(u′, xO) is the distance from voxel u′ to the current
shape xO which is identified by random walk. If u′ is inside
object O, d(u′, xO ) = 0, otherwise, d(u′, xO) equals to the
Euclidian distance from voxel u′ to the center of the shape
xO . rO is the radius of a circle. Fig.5(b) shows an example
slice of the cost image for region term in CT image.

c) Boundary term: A gradient based function similar to
that defined for PET is utilized, which takes the form

Bu′v′ = − log

(
1 − exp

(
− |∇GCT |2 (

u′, v′)

2σ 2
g′

))
, (21)
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where |∇GCT |2(u′, v′) denotes the squared gradient magni-
tude between u′ and v′. σg′ are given parameters.

4) Context Function: To make the best incorporation of the
information in PET and CT, a context term is introduced. The
context energy function takes the form as follows [22]:

Econtext ( f ) = p(1 − |Nu − Nu′ |) + q, (22)

where p is a scaling constant, q is the penalty for an
inconsistent segmentation. Nu and Nu′ are the normalization
of the region cost in PET and CT images. The cost is linearly
normalized between [0, 1]. The normalization is to make sure
that if the two voxels in PET and CT images belong to the
same label set (either to foreground or background), they will
have similar region cost [22]. If a pair voxel (u,u′) has similar
region cost, a larger context cost will be assigned to penalize
the inconsistency between PET and CT. The context cost
enables our method to follow the prominent features form each
modality and obtain two different volumes on PET and CT.

IV. EXPERIMENTS AND VALIDATION

In this section, the effectiveness of the proposed algorithm in
delineating uptake regions from PET images was shown. The
proposed method was carried out on 18 sets of PET-CT images
for validation. For quantitative assessment, the segmentation
performance on PET images was evaluated by comparing the
computed results against the reference standard.

A. Datasets

Our co-segmentation approach was evaluated in a data set
which consists of 18 3-D PET-CT images obtained from
different patients with non-small cell lung cancer (NSCLC).
For each slice of PET images, the reconstructed matrix size is
92 × 92 × 60 with a voxel size 5.47 × 5.47 × 3.27 mm3. The
reconstructed matrix size for each CT slice is 512 × 512 × 60
with a voxel size 0.98 × 0.98 × 3.27 mm3. PET images
were registered and upsampled using a linear interpolator to
obtain one-to-one voxel correspondence between PET and
CT images. The reference segmentations were obtained by
two experts manually on the PET images by the guidance of
the corresponding CT image. In this work, the segmentation
can be done for multiple tumors. However, to guarantee the
optimality of the algorithm, the segmentation is one by one.

B. Parameter Setting

In the experiments, the parameter was empirically employed
for all analyzed datasets. For random walk segmentation, the
weighting parameter β is set as 40. For the segmentation on
PET, we set the maximum region cost as Tmax = 100000, indi-
cating that if the possibility a voxel belongs to the desired area
is very small, the cost of labeling it as the target region is very
large. In PET segmentation, the regional term plays a more
important role than the boundary term so that we set λ1 = 1 for
region term. For the smoothness term, λ2 = 0.1, σg = 0.5. For
the SUV distribution term, ϕ = 20% · SMAX, γ = 4% · SMAX.
For the 3D derivative cost term, the parameters for equation
11 are set as δ = 1, σ1 = 1.5. For the downhill term, μ is

Fig. 6. The quantitative results for the segmentation results and two manual
tumor contours.

set as 0.6. For the CT segmentation, the boundary term has
a great impact on delineated results, thus we set λ3 = 1 for
the regional term. For the boundary term, λ4 = 5, σg′ = 0.5.
In the context cost function, the scaling coefficient was set as
p = 0.2, the inconsistent penalty was set as q = 0.1.

C. Evaluation of Segmentation

1) Evaluation Metrics: To measure the segmentation perfor-
mance, Dice Similarity Coefficient (DSC) was used to evaluate
the accuracy of the segmented result against the ground
truth. DSC measures how the segmented volume matches the
reference standard. We denote the segmented results and the
ground truth by U1 and U2. The Dice Similarity Coefficient
is computed as:

DSC (U1, U2) = 2 · |U1 ∩ U2|
|U1| + |U2| , (23)

2) Consistency Between Segmented Results and Manual
Ground Truth: To demonstrate the consistency between the
two manual ground truth, the DSC results were computed for
the segmentation results and the two manual contours. The
quantitative results are shown in Fig.6. In this work, we use
the user2 as the reference standard.

3) Comparison With Graph Cut Solely on PET or CT: To
determine the performance of co-segmentation of PET and
CT images, we compare the proposed method with graph cut
solely conducted on PET or CT images. The three methods
are all applied to the 18 datasets with identical initialization.
We have optimized parameters setting for each cost function
in the three methods. DSC is computed to provide quantitative
analysis. The quantitative evaluation of this comparison results
is shown in Fig.7 and reports that the co-segmentation method
outperforms the graph cut method conducted solely on PET
or CT.

4) Comparison With Improved Graph Cut Co-Segmentation
and Random Walk Method: In this paper, graph cut and ran-
dom walk are combined together and a novel energy function
for both PET and CT is devised. To evaluate the significance of
the combination of the two methods, we compare the proposed
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Fig. 7. Quantitative results and comparative performance evaluation based
on the computed DSC values.

Fig. 8. Quantitative results for the proposed method compared to improved
graph cut (IGC) and random walk method. The comparative performance
evaluation is based on the computed DSC values.

method with random walk (RW) conducted solely on PET
images and the improved graph cut co-segmentation method
(denoted by IGC) which has the novel energy regularization
but without the random walk method. In this comparison,
the same foreground and background seed sets are used
as initialization. For quantitative evaluation, the results are
displayed in Fig.8, indicating that the combination of random
walk and graph cut has great significance in the segmentation
of the tumor on PET and CT.

5) Comparison With the Related Works: The closely related
work to our method is Song et al. [22] and Bagic et al. [18].
The comparison experiments were made with the two algo-
rithms. Comparison to Song’s method can demonstrate the
effectiveness of the proposed new energy representation.
Quantitative results were displayed on Fig.9, indicating that
our algorithm has an excellent performance. TABLE I shows
the mean DSC and STD for the proposed method and the
six comparative methods. Fig.12 shows the segmentation
results for six compared methods. The illustrative results for
the proposed method are shown on Fig.13.

6) Robustness to Seed Initialization: To assess the reliability
of the proposed method to the location and quantity of the seed
points, a Monte-Carlo simulation is used to produce seeds
randomly. The seed number is set as 5 voxels and 3voxels.

Fig. 9. Quantitative results for the proposed method compared to two related
works, Song’s GC-Cosegmentation method and Bagic’s RW-Cosegmentation.

Fig. 10. Quantitative results for the proposed method using different
initialization. The Monte-Carlo simulation was operated 100 times for 5 and
3 selected seeds. (a) mean DSC and STD for 5 seeds. (b) mean DSC and
STD for 3 seeds.

The Monte-Carlo simulation is operated 100 times for each
group. For each patient, the average DSC and standard devi-
ation were computed. The quantitative results are displayed
in Fig.10 and indicate the stability of the proposed method
to seed initialization. TABLE II. shows the average DSC and
STD for each group.

7) Sensitivity to Parameter Setting: In this paper, there
are many parameters that would affect the performance of
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TABLE I

QUANTITATIVE DSC RATE USING THE PROPOSED METHOD COMPARED

WITH SIX OTHER METHODS: GRAPH UCT SOLELY USING PET, GRAPH

CUT SOLELY USING CT, RANDOM WALK METHOD, SONG’S METHOD,

IMPROVED GRAPH CUT, RW-COSEGMENTATION. RESULTS ARE

REPORTED AS MEAN±STANDARD DEVIATION

TABLE II

MEAN DSC AND STANDARD DEVIATION FOR DIFFERENT INITIALIZATION

Fig. 11. Quantitative results for the proposed method using different
parameter setting on PET energy function. (a) λ1 for the data term is set
as 1.0, 0.6, 0.2 . (b) λ2 for the boundary term is set as 0.1, 0.06, 0.02.

the algorithm. To demonstrate the sensitivity of our method
to the parameter, we changed the parameters on the energy
function E P ET , λ1 for the data term and λ2 for the boundary

Fig. 12. Three different comparative segmentation results of lesions are
shown in each column. The segmentation results on PET (blue) and ground
truth (red) are overlaid (a)–(c) the results by graph cut conducted solely on
PET images. (d)–(f) segmentation results conducted solely on CT images
(g)–(i) segmentation results by random walk (j)–(l) improved co-segmentation
graph cut method (IGC). (m)–(o) traditional co-segmentation graph cut
method (Song’s method). (p)–(r) the results conducted by random walk co-
segmentation. (s)–(u) segmentation results conducted by our proposed method.

term. The value for λ1 is set as 1.0, 0.6, 0.2 and the other
parameters remain the same. The quantitative results are shown
in Fig.11(a). The value for λ2 is also set as 0.1, 0.06, 0.02.
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Fig. 13. Three typical segmentation examples are shown in each column.
First colun: our proposed co-segmentation results on PET (blue) and ground
truth (red) are overlaid. Second column: co-segmentation from CT (light blue)
and ground truth (red). Third column: all segmentations and ground truth are
overlaid on the PET images.

The results are displayed in Fig.11(b). The quantitative results
show the proposed method is quite robust to the setting of the
parameters.

D. Execution Time

Our algorithm was implemented in C++ on a
Windows7 workstation (3.1GHz, 64GB memory). For
each dataset, our algorithm took about 1min (average time).

V. CONCLUSION

In this paper, we aim to segment the tumor simultaneously
on PET and CT by effectively integrating the physiological
information from PET and anatomical information from CT.
The key novelty of our method is the incorporation of random
walk and graph cut method and the cost function we design
for graph cut segmentation on PET and CT. The integration of
the two methods can avoid the small cut problem in graph cut
and has good performance in capturing fuzzy boundary of the
tumor on PET images. The novel energy function we proposed
effectively utilizes the features from both PET and CT images.
Each feature has contributions to tumor segmentation. The
SUV distribution feature makes our method perform well on
segmentation of both homogeneous and heterogeneous tumor.
The downhill feature can extract the surrounding tissues with
high uptakes similar to tumor SUV and its exterior can be used
as the background seeds for CT segmentation. The 3D local
structure enhancement feature has the advantage of specifying
the blob-like tumor objects. The shape term in the energy
function for CT segmentation helps locate the tumor site. The
results demonstrated the effectiveness of the proposed novel
energy functions when compared our method to the traditional
graph cut method. The significant improvement is achieved
when compared to other segmentation methods.

VI. DISCUSSION

A. Significance of the Combination of Random Walk
and Graph Cut

The common problem in the graph cut method is the small
cut behavior [65]. In the paper, the proposed algorithm is not
suffering from the problem because the random walk method
provides smart seeds for graph cut method. Since random
walk has advantage in capturing weak object boundaries,
the combination makes it significant in dealing with fuzzy
boundaries of tumor. And in our dataset, the cancer area is in
general small compared to the image.

B. Significance of the Novel Function

In this paper, graph cut method is improved by the introduc-
tion of the novel energy function. The downhill function takes
the advantage of the feature of the tumor intensity distribution
and the distance to the tumor site. This function helps to locate
the tumor and extract the surrounding tissues which have
similar intensity distribution to tumor. CT lacks metabolism
information and has low contrast, so that it is difficult to
distinguish between the disease areas and the normal tissues.
To locate the tumor site in CT image, we introduce a shape
constraint function which utilizes the prior information of the
tumor as shape prior to constrain the tumor region growing.
This function translates the Euclidean distance to the cost, the
larger the distance from the voxel to the shape, the larger the
cost.

C. Further Improvements

The identification of the foreground and background seed
points can be automated. Bagic et al. [18] have developed a
seed automatic detection algorithm. The algorithm proposed
in [18] set a threshold for the PET SUV to define the object
seeds first. Then neighboring voxels are searched to find voxels
with SUVs lower than another threshold. Those voxels are
defined as foreground and background seeds. However, the
heart and liver with high uptake SUV which is similar to
the tumor intensity will be wrong detected as the foreground
seeds, leading to a wrong guidance to the segmentation. In the
future, the detailed information of the lung structure will be
extracted from PET and CT images. The location and the size
of the organs are contained in the structure information. This
structure information will facilitate the identification of the
foreground seeds and do not yield ambiguity.

Multi-modality has become a standard method in clinical
pathological analysis, each kind of the imaging techniques
capture different characteristics of human body. Although the
co-segmentation makes use of the superior tumor contrast from
PET images and the exquisite anatomical information from CT
images, PET and CT cannot provide enough complementary
information to each other. In the future, we plan to apply our
framework to joint segmentation of MRI, PET and CT. The
combination of the three modalities, and even more modalities,
will produce a more accurate segmentation tumor results.

The anisotropic diffusion filter used in the paper considers
the noise of PET images as Gaussian distribution. It may
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result in loss of poor resolution and increased blurring of PET
images. If the quantification is needed after segmentation, then
a proper denoising method should be chosen. The generalized
Anscombe’s transformation (GAT) method [66] can be used
to stabilize the PET noise. And the trilateral filtering can
be used to preserve the boundaries of the structures while
smoothing the noisy regions and avoid significant loss of
quantitative information. The trilateral filtering, considering
the noise distribution in PET images as Poisson-Gaussian
mixed can effectively remove signal-dependent noise in the
PET images.
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