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Abstract

Automated segmentation of choroidal neovascularization (CNV) in optical coherence tomography (OCT) images plays an
important role for the treatment of CNV disease. This paper proposes multi-scale convolutional neural networks with structure
prior to segment CNV from OCT data. The proposed framework consists of two stages. In the first stage, the structure prior
learning method based on sparse representation-based classification and the local potential function is developed to capture
the global spatial structure and local similarity structure prior. The obtained prior can be used to improve the distinctive-
ness between CNV and background patches. In the second stage, multi-scale CNN model with incorporation of the learned
structure prior is constructed for CN'V segmentation. In this stage, multi-scale analysis is used to capture effective contextual
information, which is robust to varying sizes of CNV. The proposed method was evaluated on 15 spectral domain OCT data
with CNV. The experimental results demonstrate the effectiveness of proposed method.

Keywords Choroidal neovascularization (CNV) - Optical coherence tomography (OCT) - Segmentation - Structure prior -
Convolutional neural networks (CNN)

1 Introduction

Wet AMD is most likely to cause visual loss. It is character-
ized by choroidal neovascularization (CNV), in which new
blood vessels form and break beneath the retina. This leak-
age causes permanent damage to surrounding retinal tissues,
distorting and destroying central vision [1].

Optical coherence tomography (OCT) has been widely
employed for the evaluation of age-related macular degen-
eration (AMD) [2, 3]. It enables visualization of subretinal
fluid, intraretinal fluid, retinal pigment epithelial detach-
ments (RPEDs), and retinal thickening by using cross-sec-
tional B-scans. CNV may appear on structural OCT B-scans
as subretinal or sub-RPE hyperreflective material, or both of
them [4]. Compared with other imaging modalities, such as
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fluorescein angiography (FA), indocyanine green angiogra-
phy ICGA), OCT has the following advantages [5]: (1) it
is noninvasive; (2) it allows high-resolution cross-sectional
images of the neurosensory retina to be obtained; (3) it has
a higher speed.

Quantification of CNV would be useful to clinicians in
the diagnosis of CNV disease [6]. In order to quantify the
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Fig. 1 Two slice image examples with CNV

CNV lesion, the lesion should be first delineated manually.
However, manual delineation is subjective with observer
variability and time-consuming [7]. Therefore, there is a
requirement to develop a tool for automatic segmentation
of CNV.

CNV segmentation in OCT images is a challenging task
due to the complicated characteristics of CNV. Figure 1
shows two OCT image slices with CNV. We can observe
that the CNV is a complex object with varied texture, size
and irregular shape. In addition, intensity inhomogeneity
and blurring boundaries also appear in CNV region. In OCT
images, large numbers of noises also exist. Therefore, it is
difficult to obtain accurate segmentation results by using
traditional segmentation methods.

In recent years, few CNV segmentation methods were
proposed. However, these methods were performed on OCT
angiography images [6, 8] or FA images [9, 10].

Deep learning has achieved a significant success in com-
puter vision due to its powerful learning ability. Recently, it
has drawn increasing attention from medical image analysis
community [11-17]. Xu et al. presented a stacked sparse
autoencoder for efficient nuclei detection on high-resolution
histopathological images of breast cancer [11]. Van Tulder
et al. trained restricted Boltzmann machine with a genera-
tive learning objective for lung texture classification and
airway detection in CT images [12]. As a classic architec-
ture of deep neural networks, convolutional neural networks
(CNNs) may be more suitable for image segmentation or
classification task. Korsuk et al. proposed a spatially con-
strained convolutional neural network (SC-CNN) to perform
nucleus detection [13]. A multi-view CNN was proposed for
pulmonary nodule detection in CT images [14]. To obtain
the multi-scale information about each voxel, multiple CNNs
were trained based on 2D image patches with different sizes
for segmentation of MR brain images [15]. In order to use
multi-modality information of MR images, Zhang et al.
employed CNN for segmenting isointense stage brain tissues
of multi-modality MR images [16]. To obtain the training
instances, 2D patches from T1, T2, and fractional anisot-
ropy (FA) images were generated. Based on these training
instances, a CNN model was trained for each modality. The
final segmentation result was the combination of outputs of
three CNNs. Ghesu et al. combined deep learning and mar-
ginal space learning for object detection and segmentation
on a large dataset [17]. The related works have demonstrated
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that deep learning is an effective framework for medical
images analysis. Therefore, we attempt to employ this frame-
work for CNV segmentation in OCT images.

However, two problems arise when using CNN directly
for CNV segmentation. On one hand, training patches are
regarded as independent instances without considering the
relationship among them, which may limit performance
improvement. In OCT images, complicated characteristics
of CNV may result in overlapping distributions of training
patches. We use a similarity matrix to reveal the distribu-
tions of CNV and background patches approximately, as is
shown in Fig. 2. In this figure, C; denotes the CNV class
from the ith patient while B; denotes the background class
from the ith patient. For each class, a center is generated
by calculating the average of patches in this class. And the
similarity matrix is obtained by calculating the similarity
between two arbitrary centers. Euclidean distance is used
as the similarity measure. In this matrix, small values indi-
cate that two corresponding classes are similar while large
values indicate that two corresponding classes are differ-
ent. As shown in Fig. 2, we can infer that large inter-class
similarity and intra-class differences exist in the generated
patches. Based on confusing training instances, it is difficult
to learn an effective CNN model without employing more
useful information.

Generally speaking, images have fixed structure, and
their pixels exhibit certain dependencies [18]. From the
view point of the local structure, the elements in a small
local region should be more similar [18]. From the point
view of the global spatial structure, the elements in the
same objects should be more similar than the elements in
different objects. The local structure can lead to intra-class
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similarity while the global structure can lead to inter-class
difference. Liu et al. explicitly modeled the structure infor-
mation and achieved state-of-the-art performance in their
task [19]. Based on this idea, the structure information
may be exploited to improve the segmentation perfor-
mance of CNN.

On the other hand, traditional CNN is trained based on
patches with a single size. However, size of CNV is var-
ied (shown in Fig. 1). CNV with different size has different
needs in terms of context and scale information. Unfortu-
nately, effective contextual information may not be captured
in patches with a single size, resulting in performance limita-
tion of the CNN model.

To solve these two issues, this paper proposes a CNV
segmentation method using multi-scale CNN with structure
prior (MS-CNN-SP). The proposed segmentation framework
consists of the following steps: (1) structure prior learning.
First, a global structure prior learning model based on SRC
is employed to obtain global spatial prior. The prior can
reflect spatial location of CNV. Based on the learned global
structure, a local potential function is developed to calcu-
late the structure prior matrix which contains global spa-
tial prior and local similarity prior. After that, the original
image is transformed based on the structure prior matrix. In
the transformed image, saliency of CNV is enhanced due
to the introduction of effective structure prior information.
Therefore, we refer to the transformed image as saliency-
enhanced image in this paper. For the learned structure prior,
the global structure prior is used to locate the coarse spatial
position of CNV, which can reduce the similarity between
CNV and background patches. While local structure prior
is utilized to preserve the similarity between pixels from
a small local region, result in large intra-class similarity.
Therefore, the distinctiveness between CNV and background
patches can be improved in the saliency-enhanced images.
(2) Segmentation model training. Multi-scale analysis can
be used to capture effective contextual information [20].
In order to utilize effective contextual information at dif-
ferent scales, multi-scale CNN model is developed. In this
paper, we refer to multiple CNNs trained based on patches
with different size as multi-scale CNN. The structure prior
is incorporated in multi-scale CNN by using the saliency-
enhanced images as the training images. The experimental
results on our database demonstrate the effectiveness of the
proposed method.

The contributions of this paper are summarized as fol-
lows: (1) the structure prior learning method based on SRC
and local potential function is proposed to learn global
spatial prior and local similarity prior, which can improve
distinctiveness between CNV and background classes; (2)
structure prior integrated multi-scale CNN is constructed
to segment CNV in OCT images and achieves good perfor-
mance on our database.

2 Method
2.1 Method overview

Figure 3 shows the framework of the proposed segmenta-
tion method. The proposed framework consists of training
and testing stages. In the training stage, training images are
first segmented into superpixels, and then intensity, texture
and local information features are extracted for each super-
pixel. After that, global spatial structure is learned based
on superpixels and SRC. In the learned global structure
prior, spatial location of CNV can be detected. Based on
the learned global structure, the local potential function is
developed to calculate the structure prior matrix. After that,
original images are transformed into the saliency-enhanced
images based on the structure prior matrix. In order to utilize
structure prior information and capture effective contextual
information at different scales, training patches with differ-
ent sizes are extracted from saliency-enhanced images and
are used to train MS-CNN-SP models.

In the testing stage, for a test image, as same as the train-
ing stage, superpixels are generated and same features are
extracted for each superpixel, and then global spatial struc-
ture is learned based on SRC. After that, structure prior
matrix is calculated for saliency-enhanced image transfor-
mation. Based on the saliency-enhanced image, patches with
different sizes are generated and inputted into MS-CNN-
SP models. Finally, the segmentation result is obtained via
fusion of segmentation results of MS-CNN-SP models.

2.2 Structure prior learning

In order to learn effective global spatial structure prior of
CNYV, superpixel is chosen as the elementary processing
unit. After superpixel extraction, the same feature extrac-
tion method [21] is used to extract the intensity, texture and
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Fig.3 Flow chart of the proposed method
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local features for each superpixel. More details about feature
extraction can be found in [21].

After feature extraction, global spatial structure prior of
CNV is obtained in terms of superpixel classification results.
In the recent years, sparse representation has been applied in
medical image processing, such as image segmentation [22],
feature selection [23], disease diagnose [24], and achiev-
ing promising results due to its robustness. In this paper, in
order to deal with complex characteristics such as varying
intensity, texture in CNV region, SRC is employed for super-
pixel classification. For a superpixel, sparse representation
selects the atoms in the dictionary which most compactly
express the input superpixel and rejects all other possible
but less compact representations. As a result, similar atoms
contribute more to the final superpixel classification, which
is robust to the varying characteristics of CN'V.

In this paper, the dictionary is constructed by using
K-means. The superpixels from each patient are classified
into two classes: CNV and background. K-means is used
to generate centers to represent the complicated character-
istics of each class. Therefore, 2K centers are obtained for
K patients.

After dictionary construction, SRC is used for superpixel
classification. The classification result can reveal the global
spatial location of CNV. After that, a local potential function
is developed to calculate structure prior matrix, as listed in
Eq. (1):

(cor(ij)—c)? )

M@, j) = (= ey

In above equation, M is the structure prior matrix, ¢ is the
centroid of detected CNV while cor(i,j) denotes the coordi-
nate of the pixel (i,j) in the image. o can be regarded as the
radius of CNV approximately. It can be obtained by calculat-
ing mean of distances between centroid and boundary points
of detected CNV. In the calculated structure prior matrix,
the elements in a small local region are similar because the
distances between the elements and centroid are similar.
This may ensure the intra-class similarity. According to the
global spatial structure learned, values of elements in CNV
region are larger because the distances between the CNV
pixels and centroid of CNV are smaller, while the values of
background elements are smaller due to the large distance
between background pixels and centroid of CNV region.
This can guarantee the difference between CNV and back-
ground pixels.

The obtained structure prior information is introduced
into the original images and the saliency-enhanced image
is transformed based on structure prior matrix according
to Eq. (2):

I, = MI,. )
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In Eq. (2), M is the structure prior matrix, I, denotes the
original image and I, denotes saliency-enhanced image.
Figure 4 shows several original images and corresponding
saliency-enhanced images. As shown in this figure, CNV
saliency is enhanced after image transformation.

2.3 CNV segmentation using multi-scale CNN
with structure prior

In traditional segmentation task based on CNN, patches are
extracted from training images as the training set. Infor-
mation about each pixel is provided in the form of image
patches where the pixel is in the center. Labels of the patches
are as the same as the central pixels. The patches whose
central pixels are in object regions belong to positive class,
while patches whose central pixels are in the background
belong to negative class. For a test image, all pixels of
images are classified by using trained CNN, and object is
segmented according to the pixel classification results.

In this paper, we extract the training patches from
saliency-enhanced images, and CNN models are trained
based on these training patches. Original OCT images are
transformed into saliency-enhanced images by introducing
structure prior. Therefore, patches which are extracted from
saliency-enhanced images contain the structure prior. In
the training stage, CNN is trained based on these training
patches. We infer that the structure prior can be incorporated
in the learned CNN.

CNYV with different sizes has different needs in terms of
context and scale information. Therefore, single scale is dif-
ficult to capture effective contexture information of CNV
because size of CNV is varied. Considering complementary
information on different scales may be robust to scale vari-
ations [25, 26], multi-scale analysis is employed to capture
contextual information at different scales by varying the
sizes of the patches. CNN models are trained on patches with
different sizes, which can learn contextual information at

Original saliency
images enhanced
images

Fig.4 Comparison of original images and saliency-enhanced images
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different scales. The multi-scale CNN combines the segmen-
tation results of CNN trained on different scales. Therefore,
a multi-scale convolutional neural network is fit to deal with
the problem of varied size of CN'V. Based on patches with
different sizes, MS-CNN-SP models are trained. Finally, the
segmentation result is the fusion of the classification results
of multi-scale CNN-SP models. In this paper, majority vote
method is employed for segment result fusion. In our task,
we train five CNN-SP models on patches with five different
scales. For a pixel, if it is predicted as CNV by three or more
than three CNN-SP models, it belongs to CNV in the final
segmentation result.

3 Experimental results
3.1 Evaluation metrics

SD-OCT scans of 15 eyes diagnosed with CNV were
acquired using Topcon 3D-OCT-1000 (Topcon Corpo-
ration, Tokyo, Japan). Each SD-OCT volume contains
5121024 x 128 voxels. This study was approved by the
Intuitional review board of Joint Shantou International Eye
Center and adhered to the tenets of the Declaration of Hel-
sinki. Because of its retrospective nature, informed con-
sent was not required from subjects. The ground truth of
CNV region in all B-scans is manually delineated by retinal
specialists.

To evaluate the performance of the proposed method, per-
formance metrics such as Dice similarity coefficient (DSC),
true positive volume fraction (TPVF) and false positive vol-
ume fraction (FPVF) were used as performance indices. The
Dice similarity coefficient was used to measure the accuracy
of the automatic segmentation result as compared against
reference standard delineation; TPVF indicates the fraction
of the total amount of CNV in the true segmentation by the
proposed method; FPVF denotes the amount of CNV falsely
identified by the proposed method. They are calculated as
follows:

VinV,
DSC=2XM,
[VaU Vil
VianV,
TPVF:M,
[Vul
Vil=|VaNV,
ey = Val=1Van Yyl
[V = Vul

where |-| denotes volume, V,, denotes the CNV region seg-
mented by the proposed method, V), denotes the CNV region
delineated by retinal specialist, V denotes the total volume
of the OCT data.

Fig.5 CNYV segmentation results of several slice images
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Fig.6 Similarity matrix of saliency-enhanced images

3.2 Experiment settings

Caffe [27] is implemented in our experiment and Alexnet is
used as the training networks. Patches with sizes of 13 x 13,
15x15,17x17,25%25, 35 X 35 are extracted, respectively.
In the experiment, we denote CNN with structure prior
trained based on patches with different sizes as 13-CNN-
SP, 15-CNN-SP, 17-CNN-SP, 25-CNN-SP, and 35-CNN-SP,
respectively.

3.3 Effectiveness of structure prior evaluation

In this experiment, we compare multi-scale CNN (MS-
CNN) and MS-CNN-SP to demonstrate the effectiveness of
structure prior. Figure 5 gives segmentation result of several
slice image examples.

Figure 6 shows the similarity matrix of saliency-
enhanced images. Compared with distributions of original
images (shown in Fig. 2), distinctiveness between CNV
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and background is improved after saliency-enhanced image
transformation. For example, for original images, distance
between C1 and B9 is smaller than distance between Cl1
and C3. The difference between inter-classes is smaller than
difference between intra-class, which may result in perfor-
mance degradation of trained CNN. On the contrary, for
saliency-enhanced images, the difference between different
classes is enlarged while the variance of the same class is
reduced due to introduction of the structure prior informa-
tion, resulting in performance improvement.

Table 1 lists the performance of MS-CNN and MS-CNN-
SP. As observed in this table, MS-CNN-SP outperforms
MS-CNN significantly, especially for DSC, about 28 per-
centage points are increased. The reason is that the learned
structure prior can capture global spatial information about

Table 1 CNV segmentation result, compared with MS-CNN

CNV and preserve the local similarity of pixels. The global
structure prior can reduce the similarity between CNV and
background patches while local structure prior can lead to
large similarity of intra-class patches. Therefore, the learned
structure prior is useful to improve the distinctiveness
between the patches extracted from CNV region and back-
ground. MS-CNN-SP can learn the discriminative structure
information from saliency-enhanced images. Therefore, MS-
CNN-SP is more effective than MS-CNN.

3.4 Effectiveness of multi-scale analysis evaluation

Figure 7 shows the average DSC, TPVF, and FPVF of CNN-
SP at different scales. The performance of trained CNN-SP
is different according to variance of scales. DSC of CNN-SP
with size 25 X 25 is about 0.76, which is better than other
CNN-SP models trained based on different scales. However,
the DSC of MS-CNN-SP is about 0.78, which is improved

MS-CNN-SP MS-CNN pvalues by about 2% via fusion of multi-scale information.
DSC 07806 = 0.067 05092 2 0.074 0.005 From this experiment, we can observe that MS-CNN-SP
TPVE 0.8024 * 0'081 0.7862 * 0'045 0'066 outperforms CNN-SP at different scales. Since the size of
FPVE 0.0036 * 0'001 0.0183 * 0'005 0'003 CNV is varied, it is difficult to capture effective contextual
: G i G i information by using single scale. However, multi-scale
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analysis can combine complementary information between
different scales, which is robust to scale variations. There-
fore, MS-CNN-SP can boost the performance.

4 Conclusion

In this paper, we propose a CNV segmentation method using
multi-scale CNN with structure prior. In the proposed frame-
work, structure prior learning based on SRC and local poten-
tial function is first developed to capture the global spatial
structure and local similarity structure prior, which can lead
to large inter-class difference and intra-class similarity. Con-
sidering that complementary information between different
scales may be robust to CNV size variation, multi-scale
analysis is employed to capture effective contextual infor-
mation at different scales. Finally, multi-scale CNN with
the incorporation of learned structure prior is constructed
to segment CNV in OCT images. The experimental results
demonstrate the effectiveness of proposed method.

The proposed method improves segmentation perfor-
mance due to the introduction of structure prior and multi-
scale information. However, the proposed algorithm is 2-D,
ignoring useful information between slices which is impor-
tant for CNV segmentation on 3D-OCT data. Therefore,
our future work will focus on further improving segmen-
tation performance by extending our method to 3D CNN
framework.
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