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Abstract
Automated segmentation of choroidal neovascularization (CNV) in optical coherence tomography (OCT) images plays an 
important role for the treatment of CNV disease. This paper proposes multi-scale convolutional neural networks with structure 
prior to segment CNV from OCT data. The proposed framework consists of two stages. In the first stage, the structure prior 
learning method based on sparse representation-based classification and the local potential function is developed to capture 
the global spatial structure and local similarity structure prior. The obtained prior can be used to improve the distinctive-
ness between CNV and background patches. In the second stage, multi-scale CNN model with incorporation of the learned 
structure prior is constructed for CNV segmentation. In this stage, multi-scale analysis is used to capture effective contextual 
information, which is robust to varying sizes of CNV. The proposed method was evaluated on 15 spectral domain OCT data 
with CNV. The experimental results demonstrate the effectiveness of proposed method.

Keywords Choroidal neovascularization (CNV) · Optical coherence tomography (OCT) · Segmentation · Structure prior · 
Convolutional neural networks (CNN)

1 Introduction

Wet AMD is most likely to cause visual loss. It is character-
ized by choroidal neovascularization (CNV), in which new 
blood vessels form and break beneath the retina. This leak-
age causes permanent damage to surrounding retinal tissues, 
distorting and destroying central vision [1].

Optical coherence tomography (OCT) has been widely 
employed for the evaluation of age-related macular degen-
eration (AMD) [2, 3]. It enables visualization of subretinal 
fluid, intraretinal fluid, retinal pigment epithelial detach-
ments (RPEDs), and retinal thickening by using cross-sec-
tional B-scans. CNV may appear on structural OCT B-scans 
as subretinal or sub-RPE hyperreflective material, or both of 
them [4]. Compared with other imaging modalities, such as 
fluorescein angiography (FA), indocyanine green angiogra-
phy (ICGA), OCT has the following advantages [5]: (1) it 
is noninvasive; (2) it allows high-resolution cross-sectional 
images of the neurosensory retina to be obtained; (3) it has 
a higher speed.

Quantification of CNV would be useful to clinicians in 
the diagnosis of CNV disease [6]. In order to quantify the 
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CNV lesion, the lesion should be first delineated manually. 
However, manual delineation is subjective with observer 
variability and time-consuming [7]. Therefore, there is a 
requirement to develop a tool for automatic segmentation 
of CNV.

CNV segmentation in OCT images is a challenging task 
due to the complicated characteristics of CNV. Figure 1 
shows two OCT image slices with CNV. We can observe 
that the CNV is a complex object with varied texture, size 
and irregular shape. In addition, intensity inhomogeneity 
and blurring boundaries also appear in CNV region. In OCT 
images, large numbers of noises also exist. Therefore, it is 
difficult to obtain accurate segmentation results by using 
traditional segmentation methods.

In recent years, few CNV segmentation methods were 
proposed. However, these methods were performed on OCT 
angiography images [6, 8] or FA images [9, 10].

Deep learning has achieved a significant success in com-
puter vision due to its powerful learning ability. Recently, it 
has drawn increasing attention from medical image analysis 
community [11–17]. Xu et al. presented a stacked sparse 
autoencoder for efficient nuclei detection on high-resolution 
histopathological images of breast cancer [11]. Van Tulder 
et al. trained restricted Boltzmann machine with a genera-
tive learning objective for lung texture classification and 
airway detection in CT images [12]. As a classic architec-
ture of deep neural networks, convolutional neural networks 
(CNNs) may be more suitable for image segmentation or 
classification task. Korsuk et al. proposed a spatially con-
strained convolutional neural network (SC-CNN) to perform 
nucleus detection [13]. A multi-view CNN was proposed for 
pulmonary nodule detection in CT images [14]. To obtain 
the multi-scale information about each voxel, multiple CNNs 
were trained based on 2D image patches with different sizes 
for segmentation of MR brain images [15]. In order to use 
multi-modality information of MR images, Zhang et al. 
employed CNN for segmenting isointense stage brain tissues 
of multi-modality MR images [16]. To obtain the training 
instances, 2D patches from T1, T2, and fractional anisot-
ropy (FA) images were generated. Based on these training 
instances, a CNN model was trained for each modality. The 
final segmentation result was the combination of outputs of 
three CNNs. Ghesu et al. combined deep learning and mar-
ginal space learning for object detection and segmentation 
on a large dataset [17]. The related works have demonstrated 

that deep learning is an effective framework for medical 
images analysis. Therefore, we attempt to employ this frame-
work for CNV segmentation in OCT images.

However, two problems arise when using CNN directly 
for CNV segmentation. On one hand, training patches are 
regarded as independent instances without considering the 
relationship among them, which may limit performance 
improvement. In OCT images, complicated characteristics 
of CNV may result in overlapping distributions of training 
patches. We use a similarity matrix to reveal the distribu-
tions of CNV and background patches approximately, as is 
shown in Fig. 2. In this figure,  Ci denotes the CNV class 
from the ith patient while  Bi denotes the background class 
from the ith patient. For each class, a center is generated 
by calculating the average of patches in this class. And the 
similarity matrix is obtained by calculating the similarity 
between two arbitrary centers. Euclidean distance is used 
as the similarity measure. In this matrix, small values indi-
cate that two corresponding classes are similar while large 
values indicate that two corresponding classes are differ-
ent. As shown in Fig. 2, we can infer that large inter-class 
similarity and intra-class differences exist in the generated 
patches. Based on confusing training instances, it is difficult 
to learn an effective CNN model without employing more 
useful information.

Generally speaking, images have fixed structure, and 
their pixels exhibit certain dependencies [18]. From the 
view point of the local structure, the elements in a small 
local region should be more similar [18]. From the point 
view of the global spatial structure, the elements in the 
same objects should be more similar than the elements in 
different objects. The local structure can lead to intra-class 

Fig. 1  Two slice image examples with CNV
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Fig. 2  Similarity matrix of patches extracted from OCT images in our 
database
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similarity while the global structure can lead to inter-class 
difference. Liu et al. explicitly modeled the structure infor-
mation and achieved state-of-the-art performance in their 
task [19]. Based on this idea, the structure information 
may be exploited to improve the segmentation perfor-
mance of CNN.

On the other hand, traditional CNN is trained based on 
patches with a single size. However, size of CNV is var-
ied (shown in Fig. 1). CNV with different size has different 
needs in terms of context and scale information. Unfortu-
nately, effective contextual information may not be captured 
in patches with a single size, resulting in performance limita-
tion of the CNN model.

To solve these two issues, this paper proposes a CNV 
segmentation method using multi-scale CNN with structure 
prior (MS-CNN-SP). The proposed segmentation framework 
consists of the following steps: (1) structure prior learning. 
First, a global structure prior learning model based on SRC 
is employed to obtain global spatial prior. The prior can 
reflect spatial location of CNV. Based on the learned global 
structure, a local potential function is developed to calcu-
late the structure prior matrix which contains global spa-
tial prior and local similarity prior. After that, the original 
image is transformed based on the structure prior matrix. In 
the transformed image, saliency of CNV is enhanced due 
to the introduction of effective structure prior information. 
Therefore, we refer to the transformed image as saliency-
enhanced image in this paper. For the learned structure prior, 
the global structure prior is used to locate the coarse spatial 
position of CNV, which can reduce the similarity between 
CNV and background patches. While local structure prior 
is utilized to preserve the similarity between pixels from 
a small local region, result in large intra-class similarity. 
Therefore, the distinctiveness between CNV and background 
patches can be improved in the saliency-enhanced images. 
(2) Segmentation model training. Multi-scale analysis can 
be used to capture effective contextual information [20]. 
In order to utilize effective contextual information at dif-
ferent scales, multi-scale CNN model is developed. In this 
paper, we refer to multiple CNNs trained based on patches 
with different size as multi-scale CNN. The structure prior 
is incorporated in multi-scale CNN by using the saliency-
enhanced images as the training images. The experimental 
results on our database demonstrate the effectiveness of the 
proposed method.

The contributions of this paper are summarized as fol-
lows: (1) the structure prior learning method based on SRC 
and local potential function is proposed to learn global 
spatial prior and local similarity prior, which can improve 
distinctiveness between CNV and background classes; (2) 
structure prior integrated multi-scale CNN is constructed 
to segment CNV in OCT images and achieves good perfor-
mance on our database.

2  Method

2.1  Method overview

Figure 3 shows the framework of the proposed segmenta-
tion method. The proposed framework consists of training 
and testing stages. In the training stage, training images are 
first segmented into superpixels, and then intensity, texture 
and local information features are extracted for each super-
pixel. After that, global spatial structure is learned based 
on superpixels and SRC. In the learned global structure 
prior, spatial location of CNV can be detected. Based on 
the learned global structure, the local potential function is 
developed to calculate the structure prior matrix. After that, 
original images are transformed into the saliency-enhanced 
images based on the structure prior matrix. In order to utilize 
structure prior information and capture effective contextual 
information at different scales, training patches with differ-
ent sizes are extracted from saliency-enhanced images and 
are used to train MS-CNN-SP models.

In the testing stage, for a test image, as same as the train-
ing stage, superpixels are generated and same features are 
extracted for each superpixel, and then global spatial struc-
ture is learned based on SRC. After that, structure prior 
matrix is calculated for saliency-enhanced image transfor-
mation. Based on the saliency-enhanced image, patches with 
different sizes are generated and inputted into MS-CNN-
SP models. Finally, the segmentation result is obtained via 
fusion of segmentation results of MS-CNN-SP models.

2.2  Structure prior learning

In order to learn effective global spatial structure prior of 
CNV, superpixel is chosen as the elementary processing 
unit. After superpixel extraction, the same feature extrac-
tion method [21] is used to extract the intensity, texture and 

Fig. 3  Flow chart of the proposed method
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local features for each superpixel. More details about feature 
extraction can be found in [21].

After feature extraction, global spatial structure prior of 
CNV is obtained in terms of superpixel classification results. 
In the recent years, sparse representation has been applied in 
medical image processing, such as image segmentation [22], 
feature selection [23], disease diagnose [24], and achiev-
ing promising results due to its robustness. In this paper, in 
order to deal with complex characteristics such as varying 
intensity, texture in CNV region, SRC is employed for super-
pixel classification. For a superpixel, sparse representation 
selects the atoms in the dictionary which most compactly 
express the input superpixel and rejects all other possible 
but less compact representations. As a result, similar atoms 
contribute more to the final superpixel classification, which 
is robust to the varying characteristics of CNV.

In this paper, the dictionary is constructed by using 
K-means. The superpixels from each patient are classified 
into two classes: CNV and background. K-means is used 
to generate centers to represent the complicated character-
istics of each class. Therefore, 2K centers are obtained for 
K patients.

After dictionary construction, SRC is used for superpixel 
classification. The classification result can reveal the global 
spatial location of CNV. After that, a local potential function 
is developed to calculate structure prior matrix, as listed in 
Eq. (1):

In above equation, M is the structure prior matrix, c is the 
centroid of detected CNV while cor(i,j) denotes the coordi-
nate of the pixel (i,j) in the image. � can be regarded as the 
radius of CNV approximately. It can be obtained by calculat-
ing mean of distances between centroid and boundary points 
of detected CNV. In the calculated structure prior matrix, 
the elements in a small local region are similar because the 
distances between the elements and centroid are similar. 
This may ensure the intra-class similarity. According to the 
global spatial structure learned, values of elements in CNV 
region are larger because the distances between the CNV 
pixels and centroid of CNV are smaller, while the values of 
background elements are smaller due to the large distance 
between background pixels and centroid of CNV region. 
This can guarantee the difference between CNV and back-
ground pixels.

The obtained structure prior information is introduced 
into the original images and the saliency-enhanced image 
is transformed based on structure prior matrix according 
to Eq. (2):

(1)M(i, j) = e
−

(
(cor(i,j)−c)2

�
2

)

.

(2)Is = MI0.

In Eq. (2), M is the structure prior matrix, I0 denotes the 
original image and Is denotes saliency-enhanced image. 
Figure 4 shows several original images and corresponding 
saliency-enhanced images. As shown in this figure, CNV 
saliency is enhanced after image transformation.

2.3  CNV segmentation using multi‑scale CNN 
with structure prior

In traditional segmentation task based on CNN, patches are 
extracted from training images as the training set. Infor-
mation about each pixel is provided in the form of image 
patches where the pixel is in the center. Labels of the patches 
are as the same as the central pixels. The patches whose 
central pixels are in object regions belong to positive class, 
while patches whose central pixels are in the background 
belong to negative class. For a test image, all pixels of 
images are classified by using trained CNN, and object is 
segmented according to the pixel classification results.

In this paper, we extract the training patches from 
saliency-enhanced images, and CNN models are trained 
based on these training patches. Original OCT images are 
transformed into saliency-enhanced images by introducing 
structure prior. Therefore, patches which are extracted from 
saliency-enhanced images contain the structure prior. In 
the training stage, CNN is trained based on these training 
patches. We infer that the structure prior can be incorporated 
in the learned CNN.

CNV with different sizes has different needs in terms of 
context and scale information. Therefore, single scale is dif-
ficult to capture effective contexture information of CNV 
because size of CNV is varied. Considering complementary 
information on different scales may be robust to scale vari-
ations [25, 26], multi-scale analysis is employed to capture 
contextual information at different scales by varying the 
sizes of the patches. CNN models are trained on patches with 
different sizes, which can learn contextual information at 

Fig. 4  Comparison of original images and saliency-enhanced images
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different scales. The multi-scale CNN combines the segmen-
tation results of CNN trained on different scales. Therefore, 
a multi-scale convolutional neural network is fit to deal with 
the problem of varied size of CNV. Based on patches with 
different sizes, MS-CNN-SP models are trained. Finally, the 
segmentation result is the fusion of the classification results 
of multi-scale CNN-SP models. In this paper, majority vote 
method is employed for segment result fusion. In our task, 
we train five CNN-SP models on patches with five different 
scales. For a pixel, if it is predicted as CNV by three or more 
than three CNN-SP models, it belongs to CNV in the final 
segmentation result.

3  Experimental results

3.1  Evaluation metrics

SD-OCT scans of 15 eyes diagnosed with CNV were 
acquired using Topcon 3D-OCT-1000 (Topcon Corpo-
ration, Tokyo, Japan). Each SD-OCT volume contains 
512 × 1024 × 128 voxels. This study was approved by the 
Intuitional review board of Joint Shantou International Eye 
Center and adhered to the tenets of the Declaration of Hel-
sinki. Because of its retrospective nature, informed con-
sent was not required from subjects. The ground truth of 
CNV region in all B-scans is manually delineated by retinal 
specialists.

To evaluate the performance of the proposed method, per-
formance metrics such as Dice similarity coefficient (DSC), 
true positive volume fraction (TPVF) and false positive vol-
ume fraction (FPVF) were used as performance indices. The 
Dice similarity coefficient was used to measure the accuracy 
of the automatic segmentation result as compared against 
reference standard delineation; TPVF indicates the fraction 
of the total amount of CNV in the true segmentation by the 
proposed method; FPVF denotes the amount of CNV falsely 
identified by the proposed method. They are calculated as 
follows:

where |·| denotes volume, VA denotes the CNV region seg-
mented by the proposed method, VM denotes the CNV region 
delineated by retinal specialist, V  denotes the total volume 
of the OCT data.

DSC = 2 ×
|VA ∩ VM|
|VA ∪ VM|

,

TPVF =
|VA ∩ VM|

|VM|
,

FPVF =
|VA|−|VA ∩ VM|

|V − VM|
,

3.2  Experiment settings

Caffe [27] is implemented in our experiment and Alexnet is 
used as the training networks. Patches with sizes of 13 × 13, 
15 × 15, 17 × 17, 25 × 25, 35 × 35 are extracted, respectively. 
In the experiment, we denote CNN with structure prior 
trained based on patches with different sizes as 13-CNN-
SP, 15-CNN-SP, 17-CNN-SP, 25-CNN-SP, and 35-CNN-SP, 
respectively.

3.3  Effectiveness of structure prior evaluation

In this experiment, we compare multi-scale CNN (MS-
CNN) and MS-CNN-SP to demonstrate the effectiveness of 
structure prior. Figure 5 gives segmentation result of several 
slice image examples.

Figure  6 shows the similarity matrix of saliency-
enhanced images. Compared with distributions of original 
images (shown in Fig. 2), distinctiveness between CNV 

Fig. 5  CNV segmentation results of several slice images
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Fig. 6  Similarity matrix of saliency-enhanced images
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and background is improved after saliency-enhanced image 
transformation. For example, for original images, distance 
between C1 and B9 is smaller than distance between C1 
and C3. The difference between inter-classes is smaller than 
difference between intra-class, which may result in perfor-
mance degradation of trained CNN. On the contrary, for 
saliency-enhanced images, the difference between different 
classes is enlarged while the variance of the same class is 
reduced due to introduction of the structure prior informa-
tion, resulting in performance improvement.

Table 1 lists the performance of MS-CNN and MS-CNN-
SP. As observed in this table, MS-CNN-SP outperforms 
MS-CNN significantly, especially for DSC, about 28 per-
centage points are increased. The reason is that the learned 
structure prior can capture global spatial information about 

CNV and preserve the local similarity of pixels. The global 
structure prior can reduce the similarity between CNV and 
background patches while local structure prior can lead to 
large similarity of intra-class patches. Therefore, the learned 
structure prior is useful to improve the distinctiveness 
between the patches extracted from CNV region and back-
ground. MS-CNN-SP can learn the discriminative structure 
information from saliency-enhanced images. Therefore, MS-
CNN-SP is more effective than MS-CNN.

3.4  Effectiveness of multi‑scale analysis evaluation

Figure 7 shows the average DSC, TPVF, and FPVF of CNN-
SP at different scales. The performance of trained CNN-SP 
is different according to variance of scales. DSC of CNN-SP 
with size 25 × 25 is about 0.76, which is better than other 
CNN-SP models trained based on different scales. However, 
the DSC of MS-CNN-SP is about 0.78, which is improved 
by about 2% via fusion of multi-scale information.

From this experiment, we can observe that MS-CNN-SP 
outperforms CNN-SP at different scales. Since the size of 
CNV is varied, it is difficult to capture effective contextual 
information by using single scale. However, multi-scale 

Table 1  CNV segmentation result, compared with MS-CNN

MS-CNN-SP MS-CNN p values

DSC 0.7806 ± 0.067 0.5092 ± 0.074 0.005
TPVF 0.8024 ± 0.081 0.7862 ± 0.045 0.066
FPVF 0.0036 ± 0.001 0.0183 ± 0.005 0.003

Fig. 7  Performance of CNN-SP 
at different scales
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analysis can combine complementary information between 
different scales, which is robust to scale variations. There-
fore, MS-CNN-SP can boost the performance.

4  Conclusion

In this paper, we propose a CNV segmentation method using 
multi-scale CNN with structure prior. In the proposed frame-
work, structure prior learning based on SRC and local poten-
tial function is first developed to capture the global spatial 
structure and local similarity structure prior, which can lead 
to large inter-class difference and intra-class similarity. Con-
sidering that complementary information between different 
scales may be robust to CNV size variation, multi-scale 
analysis is employed to capture effective contextual infor-
mation at different scales. Finally, multi-scale CNN with 
the incorporation of learned structure prior is constructed 
to segment CNV in OCT images. The experimental results 
demonstrate the effectiveness of proposed method.

The proposed method improves segmentation perfor-
mance due to the introduction of structure prior and multi-
scale information. However, the proposed algorithm is 2-D, 
ignoring useful information between slices which is impor-
tant for CNV segmentation on 3D-OCT data. Therefore, 
our future work will focus on further improving segmen-
tation performance by extending our method to 3D CNN 
framework.
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