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Purpose: This paper studies the feasibility of developing an automatic anatomy recognition �AAR�
system in clinical radiology and demonstrates its operation on clinical 2D images.
Methods: The anatomy recognition method described here consists of two main components: �a�
multiobject generalization of OASM and �b� object recognition strategies. The OASM algorithm is
generalized to multiple objects by including a model for each object and assigning a cost structure
specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done
in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel
level which aims to find optimal oriented boundary segments between successive landmarks, the
second level is at landmark level which aims to find optimal location for the landmarks, and the
third level is at the object level which aims to find optimal arrangement of object boundaries over
all objects. The object recognition strategy attempts to find that pose vector �consisting of transla-
tion, rotation, and scale component� for the multiobject model that yields the smallest total bound-
ary cost for all objects. The delineation and recognition accuracies were evaluated separately uti-
lizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy
was evaluated in terms of true and false positive volume fractions �TPVF and FPVF�. The recog-
nition accuracy was assessed �1� in terms of the size of the space of the pose vectors for the model
assembly that yielded high delineation accuracy, �2� as a function of the number of objects and
objects’ distribution and size in the model, �3� in terms of the interdependence between delineation
and recognition, and �4� in terms of the closeness of the optimum recognition result to the global
optimum.
Results: When multiple objects are included in the model, the delineation accuracy in terms of
TPVF can be improved to 97%–98% with a low FPVF of 0.1%–0.2%. Typically, a recognition
accuracy of �90% yielded a TPVF �95% and FPVF �0.5%. Over the three data sets and over all
tested objects, in 97% of the cases, the optimal solutions found by the proposed method constituted
the true global optimum.
Conclusions: The experimental results showed the feasibility and efficacy of the proposed auto-
matic anatomy recognition system. Increasing the number of objects in the model can significantly
improve both recognition and delineation accuracy. More spread out arrangement of objects in the
model can lead to improved recognition and delineation accuracy. Including larger objects in the
model also improved recognition and delineation. The proposed method almost always finds glo-
bally optimum solutions. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3515751�
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I. INTRODUCTION

With medical imaging becoming increasingly functional and
quantitative, clinical radiology will likely lay increasingly
higher emphasis on quantification in routine practice. To fa-
cilitate quantitative radiology, computerized recognition, la-
beling, and delineation of anatomic organs, tissue regions,

and suborgans, and guided by these, the delineation and
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quantification of abnormalities will become important in
clinical radiology. Once organs have been recognized and
delineated, an important component of this task will also be
to automatically report certain fundamental morphological,
physiological, architectural, and functional information, per-
taining to the organs and tissues, derived from single/
multiple modality images. For the purpose of this paper, such

an assistive process of recognizing, delineating, and quanti-
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fying organs and tissue regions, occurring automatically dur-
ing clinical image interpretation in the Radiology reading
room, will be called automatic anatomy recognition �AAR�.
As a first step toward this larger goal, the purpose of this
paper is to demonstrate in 2D images the feasibility of de-
veloping such a system in clinical radiology.

AAR is the process of identifying and delineating objects
in medical images, in other words, the complete process of
image segmentation. The whole segmentation operation can
be thought of as consisting of two related processes: Recog-
nition and delineation. Recognition is the high-level process
of determining roughly the whereabouts of an object of in-
terest and distinguishing it from other objects in the image.
Delineation is the low-level process of determining the pre-
cise spatial extent of the object in the image. The efficient
incorporation of high-level recognition help together with
accurate low-level delineation has remained a challenge in
image segmentation.

Historically, purely image-based segmentation methods,
such as those employing thresholding, region growing, clus-
tering, active contours, level sets, live wire, watershed, fuzzy
connectedness, graph cut, and Markov random fields predate
most methods employing object population shape and ap-
pearance prior models such as atlases, statistical shape and
appearance models, and fuzzy geographic models. The rela-
tive merits of and the synergy that exists between these two
approaches—purely image-based and model-based
strategies—is clearly emerging in the segmentation field. As
such hybrid methods that form a combination of the two
approaches are emerging as powerful segmentation tools1–10

where their superior performance and robustness over each
of the component methods has been well demonstrated.
Many model-based11–18 as well as some purely image-based
techniques,19–26 specially tailored for specific body regions
and image modalities, have been developed. However, in the
context of AAR, it is better to have a general approach that is
applicable to any �or most� body regions, image modalities,
and protocols, and that do not depend heavily on the charac-
teristics of fixed shape families and image modalities. While
perhaps some of the above techniques can be generalized in
this spirit of AAR, the same methods demonstrated to work
in this general setting are few.

In this paper, we propose a general automatic anatomy
recognition method which can be applied to different body
regions and different image protocols. We propose an AAR
approach by extending the 2D OASM method6 to multiob-
ject OASM �MOASM� and demonstrate the generality of the
method on three different body regions and two image pro-
tocols. The AAR methodology described here consists of two
main novel components: �a� multiobject generalization of
OASM and �b� object recognition strategies. The OASM al-
gorithm is generalized to multiple objects by including a
model for each object and assigning a cost structure specific
to each object in the spirit of live wire.27 The delineation of
multiobject boundaries is done in MOASM via a three level
dynamic programming algorithm, wherein the first level is at
pixel level which aims to find optimal oriented boundary

segments between successive landmarks, the second level is
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at landmark level which aims to find optimal location for the
landmarks, and the third level is at the object level which
aims to find optimal arrangement of object boundaries over
all objects. The object recognition strategy attempts to find
that pose vector �consisting of translation, rotation, and scale
component� for the multiobject model that yields the small-
est total boundary cost over all objects. The proposed method
was evaluated on 2D images drawn from three routine clini-
cal data sets from three different body regions: Chest CT,
abdominal CT, and foot MRI data sets. An overall delinea-
tion accuracy of true positive volume fraction30 �TPVF�
�97%, false positive volume fraction30 �FPVF� �0.2% was
achieved, suggesting the feasibility of AAR and high accu-
racy. The results indicate that increasing the number of ob-
jects in the model improves both recognition and delineation
accuracy in clinical images. More spread out arrangement of
objects in the model can also lead to improved recognition
and delineation accuracy. Including larger objects in the
model also improved recognition and delineation.

This paper is organized as follows. In Sec. II, the com-
plete methodology of our approach and the object recogni-
tion strategies are described. In Sect. III, we describe a de-
tailed evaluation of this method in terms of its recognition
and delineation accuracy and efficiency on three different
data sets. In Sec. IV, we summarize our conclusions. A pre-
liminary version of this paper has appeared in the Confer-
ence Proceedings of the SPIE 2009 Medical Imaging
Symposium.28

II. MULTIOBJECT ORIENTED ACTIVE SHAPE
MODELS

II.A. Overview of the approach

The proposed MOASM is a multiobject generalization of
the OASM method.6 Compared to one object in OASM,
there are multiple objects in the model in MOASM. Let O1,
O2 , . . . . ,Om be the physical objects of interest in a given
body region B, such as the liver, lungs, heart, etc., in the
thoracic region. For segmenting the boundaries of these ob-
jects in an image of a particular manifestation of them, ASM
captures the statistical variations in the boundaries of these
objects within these objects’ family via a statistical shape
model M. MOASM, like OASM, considers each object
boundary to be oriented and determines a cost structure K
associated with M via the principles underlying the live wire
method. As per this cost structure, every shape instance xO of
every object O in B generated by M is assigned a total cost
KO�xO� in a given image I. This cost is determined from the
live wire segments generated in I between all pairs of suc-
cessive landmarks of the shape instance xO. MOASM seeks
that set of oriented boundaries in I corresponding to
O1 , . . . . ,Om, each of which is a sequence of live wire seg-
ments between successive pairs of landmarks of a shape in-
stance xO, such that xO satisfies the constraints of M, and the
total cost �OKO�xO� over all objects in I considered in the
model is the smallest possible. The main steps involved in

MOASM are listed below. Each step is described in detail in
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each subsection of Sec. II. A comparison is also given be-
tween the proposed MOASM and the OASM method in each
subsection.

II.A.1. Algorithm MOASM
II.A.1.a. Model building /training phase.

�T1� Specify landmarks on boundaries of objects
O1 , . . . ,Om in the training images provided for body re-
gion B.
�T2� Construct a shape model M for the objects in B
from the landmarks and training images.
�T3� Create boundary cost function K.

II.A.1.b. Segmentation phase.

�S1� Initialization/recognition: Determine, in the given
image I of B of a patient, the pose at which M should be
set in I so that the model boundaries are close to the real
object boundaries in I. Let the shape instance of the
multiple object assembly corresponding to the recog-
nized site be x= �xO1 , . . . ,xOm�.
�S2� Delineation: For the shape instances x of the mul-
tiple object assembly, determine the best oriented
boundaries in I as per the MOASM method.
�S3� If the convergence criterion is satisfied, output the
best oriented boundaries found in S2 and stop. Else sub-
ject x to constraints of model M and go to step S2.

In this procedure, T1–T3 constitute training or model cre-
ation steps, and S1–S3 represent initialization/recognition
and delineation steps. These steps are described in the fol-
lowing sections in detail.

II.B. T1: Specifying landmarks

Similar to the OASM method, MOASM specifies land-
marks for multiple objects. Suppose each object Oi consid-
ered for inclusion in the model has ni landmarks, 1� i�m.
Then the vector representation for planar shapes would be

x = �xO1,xO2, . . . ,xOm�

= �x1
O1,x2

O1, . . . ,xn1

O1,x1
O2, . . . ,xn2

O2, . . . xnm

Om�

= �x1
O1,y1

O1,x2
O1,y2

O1, . . . ,xn1

O1,yn1

O1,x1
O2,y1

O2, . . . ,xn2

O2,yn2

O2, . . .

xnm

Om,ynm

Om� . �1�

In many ASM studies, a manual procedure is used to label
the landmarks in a training set, although automatic methods
are also available for this purpose. For our approach, any
such method will work, although we have used the manual
method in producing all presented results.

II.C. T2: Building model M

To obtain a true shape representation of the family of an
object Oi, location, scale, and rotation effects within the fam-
ily need to be filtered out. This is done by aligning shapes
within the family of Oi �in the training set� to each other by

changing the pose parameters �scale, rotation, and
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translation�.29 For multiple objects, the object assemblies are
aligned. Principal component analysis �PCA� is then applied
to the aligned N training shape vectors xi, i=1, . . . ,N. The
model M is then constructed following the ASM procedure.29

II.D. T3: Creating boundary cost function K

Similar to OASM, the live wire method of Ref. 25 is used
in MOASM because of its boundary orientedness properties
and the distinct graph model it uses. Unlike OASM,
MOASM trains the boundary cost functions K1, K2 , . . . . ,Km

for each object O1, O2 , . . . . ,Om separately, where Ki is the
boundary cost structure for Oi. Each cost structure Ki is spe-
cifically optimally tailored for each object Oi, as briefly ex-
plained below �see Ref. 25 for details�.

A boundary element, bel for short, of I is an ordered pair
�d ,e� of four-adjacent pixels d and e. It represents the ori-
ented edge between pixels d and e, �d ,e�, and �e ,d� repre-
senting its two possible orientations. To every bel of I, we
assign a set of features. The features are intended to express
the likelihood of the bel belonging to the boundary �of a
particular object Oi� that we are seeking in I. The cost c�b�
associated with each bel b of I is a linear combination of the
costs assigned to its features,

c�b� =
�iwicf�f i�g��

�iwi
, �2�

where wi is a positive constant indicating the emphasis given
to feature function f i and cf is the function to convert feature
values f i�g� to cost values cf�f i�g��. In live wire,25 f i’s rep-
resent features such as intensity on the immediate interior of
the boundary, intensity on the immediate exterior of the
boundary, and gradient magnitude at the center of the bel. cf

is an inverted Gaussian function, and here, identical weights
wi are used for all selected features.

For the purpose of MOASM, we shall utilize the feature
of live wire to define the best oriented path between any two
points as a sequence of bels with minimum total cost. The
only deviation in this case is that the two points will be taken
to be any two successive landmarks employed in the model,
and the landmarks are assumed to correspond to pixel verti-
ces. With this facility, we assign a cost to every pair of suc-
cessive landmarks of any shape instance xOi, which repre-
sents the total cost of the bels in the best oriented path
�b1 ,b2 , . . . ,bh� from landmark xk

Oi to landmark xk+1
Oi . That is,

��xk
Oi,xk+1

Oi � = �
j=1

h

c�bj� . �3�

For any shape instance xOi = �x1
Oi ,x2

Oi , . . . ,xni

Oi� of Oi, the cost
structure Ki=��xOi� may now be defined as

Ki�xOi� = �
k=1

ni

D�xk
Oi���xk

Oi,xk+1
Oi �D�xk+1

Oi � , �4�

where we assume that xni+1
Oi =x1

Oi and D�xk
Oi� is the Mahalano-

bis distance for the intensity profile at xk
Oi for object Oi as
defined below,
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D�xk
Oi� = �gk − ḡk�T�Sk

g�−1�gk − ḡk� , �5�

where gk is the intensity profile at landmark xk
Oi �we sample

2l+1 intensities along the direction perpendicular to the
boundary at this landmark� and ḡk and Sk

g are the mean and
covariance matrix of the intensity profile at this landmark,
respectively.

That is, Ki�xOi� is the weighted sum of the costs associ-
ated with the best oriented paths between all ni pairs of suc-
cessive landmarks of shape instance xOi. Thus, once the bel
cost function is determined via training �as described in Ref.
25�, Ki is also determined automatically by Eq. �4�. Then, for
MOASM, the total boundary cost function can be created as
K�x�=�i=1

m Ki�xOi�. The multiobject model M together with
the multi object cost structure K constitutes our MOASM:
MMOASM= �M ,K�.

II.E. S1: Automatic initialization/recognition

The goal of automatic initialization, or object recognition,
is to find an initial pose for M in the given image I. Com-
pared to OASM, automatic initialization �recognition� via
MOASM is more robust and efficient. As the number of
objects in the model increases and if the objects are selected
strategically, the ways in which objects can be fitted in the
given image to be segmented become severely constrained,
and therefore, the search space becomes substantially
smaller. So, even when there is only one object of interest,
MOASM uses multiple objects in the model just to make the
recognition of the object of interest, and hence its delinea-
tion, more accurate, robust, and effective.

Suppose p denotes the pose vector for the object assem-
bly, which includes a location component �tx , ty�, scale com-
ponent �s�, and orientation component ���. The goal of rec-
ognition is to find the best initial pose in I for MMOASM. Our
experiments indicate that, because of the globally optimal
delineations and the orientedness nature of MMOASM, the
small variations in orientation observed in strict protocol
guided clinical image acquisitions can be automatically
handled in the delineation step, and thus, � can be ignored
for the purpose of recognition. Thus, p becomes three-
dimensional �tx , ty ,s�. The recognition task is then to find

p� = arg minpBC�p,I,K1, . . . . ,Km� , �6�

where BC�p , I ,K1 , . . . ,Km�=�i=1
m Ki�xOi�, which denotes the

sum of the cost �as per cost structures K1 , . . . . ,Km� of the
boundaries of all m objects delineated starting with the
model at p. As m increases, the constraints imposed become
quite severe and the search for p� becomes remarkably
easier, and accurate recognition can be achieved by discretiz-
ing the space of p and by performing exhaustive search
within a restricted space of the p vectors. The automatic
initialization method proposed here is an essential underpin-
ning of the MOASM method. It relies on the fact that, at a
position of a shape instance of MOASM that is close to the
correct boundaries of O1 , . . . ,Om in I, the total cost BC of the
oriented boundaries of all objects included in MOASM is

likely to be sharply smaller than the cost of the oriented
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boundary assembly found at other locations in I. In our
implementation, the recognition process consists of the fol-
lowing steps. Let the given image to be segmented be I and
the mean pose vector p̄= �t̄x , t̄y , s̄�t represent the mean loca-
tion �t̄x , t̄y� and scale �s̄� observed over all training images
for the objects included in the model. Let SS be a search
space—a set of pose vectors—centered around p̄.

Object recognition algorithm

Begin
1. For each p�SS, perform steps 2 and 3.
2. Place M at p. Deform each object as per standard ASM
searching method.
3. Evaluate BC�p , I ,K1 , . . . . ,Km�.
4. Find p� corresponding to the minimum BC over all
tested p�SS.
5. Output the delineated object shapes xp= �xp

O1 , . . . ,xp
Om�

corresponding to p�.
end

It is important to note that SS is a small set of pose vec-
tors uniformly sampled in a region around p̄ in the imple-
mentation. Typically, we have used a search region of 100
�100�0.5 �in x, y, s units, where x and y units are in terms
of the number of pixels� which is sampled at every 20–25
pixels along x and y and 0.1–0.15 in s. Thus, SS consists of
roughly 50–125 vectors.

II.F. S2: Delineation

This step assumes that the recognized �initialized� shape
assembly instance xp of the objects in M derived from step
S1 is sufficiently close to the actual boundaries of Oi �for all
1� i�m� in I. It then determines what the new position of
the landmarks of the objects represented in xp should be such
that the sum of the costs of the oriented paths between all
pairs of successive landmarks is the smallest, where the cost
takes into account not only the boundary cost Ki of each
object Oi �Eq. �4�� but also the relationship among objects.
This is accomplished through a three-level dynamic pro-
gramming �3LDP� algorithm. Compared to 2LDP in the
OASM method, the 3LDP algorithm in MOASM not only

R
ecognition

iO
2P iO

3PiO
1P i

i

O
nP iO

1P

Delineation

FIG. 1. The weighted graph used in the second level dynamic programming.
The nodes in each column represent the set of points Pk

Oi that are sampled
Oi
along a line orthogonal to the boundary at each landmark xk .
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attempts to find an optimal path for each object but also aims
at delineating all objects in a consistent and globally optimal
way.

Let the shape for object Oi to be modified be xOi

= �x1
Oi ,x2

Oi , . . . ,xni

Oi�. At each landmark xk
Oi, L=2q+1�q��l,

where l is the number of points selected on each side of xk
Oi

in the appearance aspect of the model during training� points
are selected, including xk

Oi, with q points on either side of xk
Oi

along a line perpendicular to the shape boundary at xk
Oi. Let

the set of these points be denoted by Pk
Oi.

From each point in Pk
Oi, there exists a minimum cost ori-

ented path to each point Pk+1
Oi in I, which can be determined

via a first level DP as in the live wire method. We are inter-
ested in that set of minimum cost paths, one selected be-
tween each pair �Pk

Oi ,Pk+1
Oi �, such that, the resulting closed

boundary is continuous, and its total cost is the smallest pos-
sible. This problem can be solved via a second level of DP as
illustrated in the graph of Fig. 1. In this graph, the set of
nodes is P1

Oi U P2
Oi U.. .U Pni

Oi U P1
Oi, and the set of di-

rected arcs is �P1
Oi �P2

Oi�U�P2
Oi �P3

Oi�U.. .U�Pni−1
Oi

�Pni

Oi�U�P1
Oi �P1

Oi�. Each arc �u ,v� in this graph has a cost
which is simply the cost ��u ,v� �Eq. �3�� of the minimum
cost oriented �live wire� path between u and v in I. Thus,
each directed arc such as �u ,v� also represents an oriented
boundary segment from u to v as a sequence of bels. Note
that a directed path, such as the one shown in the middle of
Fig. 1, starting from some node u in P1

Oi in the first column
and ending in the same node in the last column constitutes a
closed, oriented boundary as a sequence of bels. Our aim is
to find the best of all such directed paths �closed, oriented
boundaries�, each starting from some node in the first col-
umn and ending in the same node in the last column. This
problem can be solved by a second level of DP. Since there
are L nodes in the first �and every� column, in OASM, the
second level DP is applied L times, and a directed closed
path among the L optimal paths which yields the lowest total
cost is considered to be the best and the desired delineation
of Oi.

In the MOASM method, instead of choosing the best
among the L optimal paths for each object �as done in
OASM�, one more level �object level� optimization is carried
out. This is done by combining the cost of the optimal
boundaries with the cost associated with object relationships
to ensure propriety of relationships as described below. Sup-
pose we determine a linear order for the objects, denoted by
O1 , . . . . ,Om, and fix this order once for all �how to choose
the order is discussed later�. Let the L optimal boundaries of
Oi found above be B�

Oi, 1���L. We quantify the relation-
ship between successive objects �Oi ,Oi+1�, 1� i�m, in the
sequence via three factors, for 1� i�m and 1��, k�L:
Relative position RP�,k

i =x̄�
Oi −x̄k

Oi+1, where x̄�
Oi is the geomet-

ric center of B�
Oi; relative size RS�,k

i =A�
Oi /Ak

Oi+1, where A�
i is

the Bk
Oi+1 area enclosed by B�

Oi; and boundary distance BD�,k
i ,

which is the Housdorff distance between B�
Oi and Bk

Oi+1. The
relationship R�

i between Oi and Oi+1 is quantitatively ex-

pressed by a weighted combination of the three factors as

Medical Physics, Vol. 37, No. 12, December 2010
R�,k
i = �

x��RP,RS,BD	
wxGx��x,	x� , �7�

where Gx��x ,	x� denotes a Gaussian function with mean �x

and standard deviation 	x. GRP is a Gaussian function of
RP�,k

i . Its parameters �RP and 	RP are estimated from the
training data sets. GRS and GBD and their parameters are de-
fined in an analogous manner. wx are weights chosen such
that �xwx=1. �In all experiments, we used wRP=wRS=0.3.�

Given L optimal shapes for each Oi, 1� i�m, the best
shape for each Oi and the arrangement of objects in I is
determined via a third level DP �3LDP� carried out on the
graph shown in Fig. 2. Each of the L optimal shapes B�

Oi for
each Oi constitutes a node in this graph and a pair such as
�B�

Oi ,Bk
Oi+1�, 1� i�m, 1��, k�L, constitutes a directed arc.

The integrated cost assigned to this arc is

IC�B�
Oi,Bk

Oi+1� = Ki�B�
Oi� · Ki+1�B�

Oi+1� · R�,k
i . �8�

As in Fig. 1, we observe that there is an optimum path in the
graph of Fig. 2, starting from each node in the first column
and ending on some node in the last column. The MOASM
method finds each such optimum path �which represents one
arrangement of the object assembly� and the best among L
such arrangements via 3LDP.

The 3LDP algorithm may be summarized as follows.
Given a shape assembly xp= �xp

O1 ,xp
O2 , . . . ,xp

Om�
= �x1

O1 ,x2
O1 , . . . ,xn1

O1 ,x1
O2 , . . . ,xn2

O2 , . . .xnm

Om� and I, it outputs a
new shape assembly xo and the associated optimum oriented
boundaries as a sequence of bels.

Algorithm 3LDP

Input: Initialized shape assembly xp

Output: Resulting shape assembly xo and the associated
oriented boundaries.
begin
1. For each object Oi�1� i�m�, do steps 2 to 4.
2. Determine P1

Oi , P2
Oi , . . . . , Pni

Oi sets of points for Oi in I.
3. Determine costs ��u ,v� via first level DP for all
directed arcs in Fig. 1.
4. For each point u in P1

Oi, determine the best directed
path from u back to u via the second level DP, the
corresponding shape xOi, and its total cost Ki�xOi�.
5. Compute arc costs IC�B�

Oi ,Bk
Oi� in Fig. 2. Find the best

path xo which has minimal total cost in the graph of Fig.
2 via third level DP.
6. Output the optimum shape assembly xo and the
corresponding oriented boundaries.
end

II.G. S3: Applying model constraints

The convergence criterion used here is a measure of the
distance between two shapes encountered in two consecutive
executions of step S2. This measure is simply the maximum
of the distance between corresponding landmarks in the two
shape assemblies of all objects. If this distance is greater than
0.5 pixel unit, the optimum shape assembly found in step S2
is subjected to the constraints of model M. Then the iterative

process is continued by going back to step S2. Otherwise, the



6395 Chen et al.: Automatic anatomy recognition via moasm 6395
MOASM process is considered to have converged and it
stops with an output of the optimum shape assembly and the
optimum oriented boundaries found in the process.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate both qualitatively, through
image display, and quantitatively, through evaluation experi-
ments, the extent of effectiveness of the MOASM strategy.
Three clinical image data sets which include abdominal CT,
chest CT, and foot MRI have been considered. Our method
of evaluation, based on the framework of reference,30 will
focus on the analysis of accuracy and efficiency of MOASM.
We will also present an evaluation of the proposed object
recognition strategies. We will consider manual segmentation
performed in these different data sets to constitute a surro-
gate of true segmentation for assessing the delineation and
recognition accuracy of the methods.

III.A. Image data sets

The image data sets and objects employed in the experi-
ments are described in Table I and Fig. 3. Both CT data sets

Object layout

O
bjectshape

O1 O2 … OmOm-1

1

2

3

L

…

L-1

FIG. 2. The graph used in the third level of optimization. There are m ob-
jects to be delineated and L possible optimal shapes for each object. The
horizontal direction represents different objects. The vertical direction rep-
resents the different object shapes.

TABLE I. Description of the image data sets used in

Data set Objects Numbe

Abdominal CT �1� Right pelvic bone
�2� Vertebra
�3� Left pelvic bone
�4� Skin boundary

Chest CT �1� Right lung
�2� Heart
�3� Left lung
�4� Skin boundary

Foot MRI �1� Tibia
�2� Talus
�3� Calcaneous
�4� Skin boundary
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constitute slices selected from 3D CT studies on a Siemens
Sensation 16 CT scanner with a slice spacing of 5 mm, im-
age size of 512�512, and pixel size of 0.78�0.78 mm2.
The MRI Foot data set constitutes slices selected from 3D
studies on a GE 1.5T MRI scanner with a slice spacing of 1.3

ree AAR experiments.

andmarks used Image domain No. of images

10 512�512 40
12
10
12
10 512�512 40
9
10
12
7 256�256 40
14
15
11

Object 4

Object3

Object 1

Object 2

Object 4

Object 3

Object 2

Object 1

Object 4

Object 3

Object 1

Object 2

FIG. 3. The four objects selected in the abdominal CT, chest CT, and foot
MRI data sets.
the th

r of l
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mm, image size of 256�256, and pixel size of 0.55
�0.55 mm2. In each data set, 40 slices selected from full 3D
images, acquired from 15 different subjects are used. These
slices are approximately at the same anatomic location in the
body, so that, for each object, the 40 2D images in each set
can be considered to represent images of a family of objects
of same shape. Two to three slices are taken on average from
the same subject’s data, either from the same 3D image or
from different 3D images. Among the 40 images, 25 are
randomly selected for training, and the rest are used as test
images. MOASM models were built by manually selecting
landmarks on the segmented boundaries.

III.B. Qualitative analysis

A subjective inspection revealed that, in all experiments,
the MOASM results matched the perceived boundary very
well. Some examples are displayed for the three data sets in
Fig. 4. Automatic initialization based on location and scale
search worked well in all cases in the sense that initialized
shapes were found close to the true boundary. In the figure,
the original image with the mean shape assembly in its de-
fault pose is displayed in Fig. 4�b�. In Fig. 4�c�, the model

(a) (b) (c)

TABLE II. Mean and standard deviation of TPVF and

Data set

TPVF

ASM M

Abdominal CT 88.56%
2.2% 97.3
Chest CT 87.89%
0.15% 98.3
Foot MRI 90.01%
0.34% 97.2
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shapes resulting from the recognition process, which form an
input to the MOASM algorithm, are displayed. The final de-
lineation results are shown in Fig. 4�d�.

III.C. Quantitative analysis of segmentation

Here, we will focus on the analysis of accuracy and effi-
ciency of MOASM from the perspective of the final delinea-
tion results and compare them with those of the classical
ASM method. Accuracy here relates to how well the seg-
mentation results agree with the true delineation of the ob-
jects. Efficiency indicates the practical viability of the
method, which is determined by the amount of time required
for performing computations and for providing any user help
needed in segmentation. The measures that are used under
each of these groups and their definitions are given below. In
these analyses, all test data sets from all three groups of data
were utilized.

Accuracy. The following measures, called TPVF and
�FPVF� �Ref. 30� are used to assess the accuracy of the meth-
ods. The ground truth for delineation �and recognition� is
provided by manually delineating the shapes. In all applica-
tions, all data sets have been previously manually segmented

(d)

FIG. 4. One example from each of the
three data sets: �a� original image, �b�
default initial model pose, �c� auto-
matic recognition result, and �d� delin-
eation result by MOASM.

F for ASM and MOASM.

FPVF

M ASM MOASM

.1% 0.66%
0.01% 0.13%
0.01%

.2% 0.99%
0.02% 0.17%
0.01%

.3% 0.41%
0.01% 0.11%
0.01%
FPV

OAS

%
1
%
0
%
0
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in the domain. Table II lists the mean and standard deviation
values of TPVF and FPVF achieved by using ASM and
MOASM methods. TRVF/FPVF are calculated as per Ref.
30 for each object separately. Then the average TRVF/FPVF
over all objects is used as the performance. It shows that
MOASM produces considerably more accurate final segmen-
tations than the ASM method. It is important to note that
only a small set of landmarks is needed for each object in
MOASM as shown in Table I due to the efficiency of live
wire for boundary delineation. However, with more land-
marks, the method will have even superior performance.

Efficiency. Both methods are implemented on an Intel
Pentium IV PC with a 3.4 GHZ CPU using MATLAB pro-
gramming. In determining the efficiency of a segmentation
method, two aspects should be considered—the computation
time �Tc� and the human operator time �To�. The mean Tc and
To per data set estimated over the three data sets for each
experiment are listed in Table III. To measured here is the
operator time required in the training step �for selecting land-
marks�. Table III shows that the operator time �training� re-
quired in MOASM is much less than that of ASM since far
fewer landmarks are needed in MOASM. The computation
time required in MOASM is a little more than that of ASM
because of the 3LDP algorithm.

FIG. 5. Illustration of robust region RR for an image from the abdominal
data set. The white point is the geometric center of the recognized shape
assembly. In this case recognition is perfect. The darker region around the
white point located within the vertebral body is the robust region RR con-

TABLE III. Mean operator time To and computational time Tc �in seconds� in
all experiments for ASM and MOASM. The number of landmarks used is
indicated by n�.

Data Set

To Tc

ASM MOASM ASM MOASM

Abdominal CT 160�n�=132� 60�n�=44� 18 30
Chest CT 130�n�=123� 55�n�=41� 16 28
Foot MRI 170�n�=141� 65�n�=47� 12 20
sidering just the x and y location components of p.
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III.D. Evaluation of object recognition strategies

It is clear that the effectiveness of recognition depends
very much on the integrated cost function IC, which in turn
depends on the cumulative boundary cost function BC, and
the cost structures K1 , . . . ,Km. This in turn implies that the
recognition efficacy is influenced by the particular combina-
tion of objects included in MOASM. Here, we evaluate the
relationship between object recognition and delineation ac-
curacy and the number of objects considered in M and their
actual spatial distribution.

Robust region. To characterize the robustness of the rec-
ognition method, we define a concept called robust region
RR as

RR = �pose vector p
when the recognized

object assembly is at p, the resulting

delineation accuracy is acceptably “ high ”

�say, with TPVF � 97% and FPVF � 3%�	 . �9�
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FIG. 6. The volume of the robust region in the �x, y, s� space for different
number of objects. �a� Abdominal CT data set, �b� chest CT data set, and �c�
MRI data set. The mean value and standard deviation over all test data sets
are shown.
RR is a useful factor to quantify the robustness of the recog-
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nition method and to compare among recognition strategies.
The size of RR is an indicator of the robustness of the rec-
ognition strategy resulting from a particular choice of the
objects included in MOASM. The larger the robust region is,
the more robust the recognition method is. Figure 5 shows an
illustration of the robust region RR �red region� for an image
from the abdominal CT data set. The white point is the geo-
metric center of the recognized shape. The red region is the
robust region RR, considering only the x, y location compo-
nent of p. In this case, as the white point is within the red
region, it implies high delineation accuracy. The size of the
robust region in the AAR method over all images in these
three data sets is roughly 22 pixels�23 pixels
�0.20, 23 pixels�24 pixels�0.20 and 20 pixels
�22 pixels�0.16, respectively. Figure 6 illustrates how the
size �volume� of RR �x range�y range�scale range� var-
ies for different numbers of objects in these three data sets.
The results suggest that the MOASM recognition process
becomes more robust as the number of objects in the model
increases. This is true even in studying only one object.

Accuracy dependence on the number of objects, objects’
distribution, and object size. It is interesting to note that the
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FIG. 7. The depedence of delineation accuracy on the number of objects in
the three data sets. �a� Abdominal CT data set, �b� chest CT data set, and �c�
foot MRI data set. For labels 1, 2, and 3, all combinations of 1, 2, and 3
objects were considered. The mean value over all test dta sets and standard
deviation are shown.
recognition accuracy improves with increasing number of
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objects. Figure 7 shows the experimental results on the three
data sets. In order to test how the objects’ distribution may
influence recognition accuracy, two objects were selected in
different combinations for the three data sets. Figure 8 shows
the experimental results on these three data sets. We observe
that the recognition accuracy is higher if the objects are dis-
tributed more evenly. We also found that it is a good idea to
include the encompassing object �such as skin boundary� as
it provides a strong and robust constraint. Figure 9 demon-
strates that delineation accuracy depends on the size of the
object also. The figure shows how the delineation accuracy
of object 1 in the three data sets improves as the object used
for recognition is chosen to have increasingly larger size. On
the horizontal axis, label 1 indicates that only object 1 is
used in the model for recognizing and delineating object 1.
Label 2 indicates that, in addition to object 1, object 2 is also
employed in the model, and so on.

Interdependence between recognition and delineation.
The effectiveness of AAR depends on the interaction be-
tween object recognition and object delineation; in other
words, the pose at which the objects should be initialized
influences delineation accuracy. Conversely �obviously�, the
recognition accuracy itself depends on delineation accuracy
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FIG. 8. The dependence of delineation accuracy on the distribution of ob-
jects in the three data sets. Distribution: 1: objects 1, 2; 2: objects 1, 3; 3:
objects 1, 4; 4: objects 2, 3; 5: objects 2, 4; 6: objects 3, 4. �a� Abdominal
CT data set; �b� chest CT data set; �c� foot MRI data set.
since IC, BC, and Ki will depend on the delineated bound-
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aries. Experiments were also carried out to study the interde-
pendence between recognition and delineation. We find that
�Fig. 10� with the improvement of recognition, delineation
also becomes more accurate. It means that good delineation
can help in recognition and perfect recognition can make
delineation most accurate. This is the spirit of the synergy
established between ASM and live wire by MOASM. Delin-

TABLE IV. Results showing how often globally optim
data sets.

Object 1 Object 2

Abdominal CT 15 /15=100% 14 /15=93.3%
Chest CT 15 /15=100% 15 /15=100%
Foot MRI 15 /15=100% 15 /15=100%
Total 45 /45=100% 44 /45=97.7%
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FIG. 9. Illustration of how better recognition via larger objects included in
MOASM influences delineation accuracy. The delineation accuracy is
shown for object 1 in all three data sets. The horizontal axis indicates the
number of the object included in the model �with increasing size� in addition
to object 1 for facilitating recognition. �a� Abdominal CT data set. �b� Chest
CT data set. �c� Foot MRI data set.
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eation accuracy is shown over the same objects that are used
in the model for recognition. Here, the recognition accuracy
is defined as an inverse function of the distance of the geo-
metric center loc of the model at the end of recognition from
RR, as follows:

AR = exp�− � · dist�loc,RR�� , �10�

where � is a constant �here �=0.1�. If the distance is 0, AR

=1 �perfect recognition�.

III.E. How far is MOASM solution from the global
optimum?

As described in Ref. 6, the single-object OASM algorithm
finds a globally optimal boundary if the recognition step
brings the model to a pose, wherein the line profile drawn
orthogonal to the model shape boundary at every landmark is
intersected by the globally optimal boundary. This property
is valid also for the MOASM algorithm. From Figs. 6–10, it
is also clear that MOASM has better performance than �the
single-object� OASM in terms of both delineation and rec-
ognition accuracy. To determine how often globally optimum
solutions are actually found, we examined the MOASM rec-
ognition results for each of the four objects in all �15�3
=45� test data sets to ascertain how often the above optimal-
ity property is satisfied. Table IV suggests that, overall, in
97% of the cases the globally optimal solution is actually
found. We also computed the percent difference between the
true optimum boundary cost �which can be determined since
the true boundaries are known� and the optimum found by
the MOASM method for the chest CT data set. These are
listed in Table V, which shows that the differences are quite
small, although for object 3 �heart� the cost function can be

undaries are found for the four objects in the three

Object 3 Object 4 Total

/15=100% 14 /15=93.3% 43 /45=95.5%
/15=93.3% 15 /15=100% 44 /45=97.7%
/15=100% 14 /15=93.3% 44 /45=97.7%
/45=97.7% 43 /45=95.5% 131 /135=97.0%
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FIG. 10. Recognition accuracy versus delineation accuracy in the abdominal
CT data set. �a� TPVF versus recognition accuracy; �b� FPVF versus recog-
nition accuracy.
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perhaps improved. Better cost functions also lead to a larger
RR and hence more efficient recognition.

All results reported thus far in this section were produced
assuming the orders O1, O2, O3, and O4 for objects in all
three data sets for devising the cost function IC referred to in
Fig. 2, where the number assignment to objects is as depicted
in Fig. 3. To test the dependence of delineation accuracy on
this order, for the three data sets, we ran the entire segmen-
tation experiment for five other object sequences. The results
for all six sequences are summarized in Table VI. The results
suggest that the delineation accuracy is more or less indepen-
dent of the object sequence employed for IC.

IV. CONCLUDING REMARKS

This paper presented a generalization of the single-object
oriented ASM methodology to multiple objects. The ratio-
nale for this generalization was, primarily, for improving the
accuracy and robustness of object recognition, and second-
arily, and consequently, also for improving delineation accu-
racy. The robustness of recognition also implies automated
recognition. The paper introduced several new concepts: �1�
using an assembly of objects even when there is only one
object of interest, �2� separating recognition from delineation
although they are interdependent, �3� the notion of robust
region, �4� assessing recognition accuracy via RR indepen-
dently of delineation, and �5� the dependence of recognition
and delineation accuracy on the number and geographic dis-
tribution of objects included in the MOASM. These concepts
were illustrated and validated via routine clinical chest CT,
abdominal CT, and foot MRI data sets. The evaluated results
indicate that �a� an overall delineation accuracy of TPVF
�97%, FPVF �0.2% can be achieved, suggesting the feasi-
bility of AAR. �b� Increasing the number of objects can con-
siderably improve both recognition and delineation accuracy
in clinical images. �c� More spread out arrangement of ob-
jects can lead to improved recognition and delineation accu-
racy. The larger the robust region is, the more robust the

TABLE V. Difference between the true optimum cost and the cost of the
optimum boundaries actually found for the different objects in the chest CT
data set. Mean values over the 15 test images are shown.

Object 1 Object 2 Object 3 Object 4 Total

1.4% 2.3% 9.7% 0.04% 3.8%

TABLE VI. Delineation accuracy �mean and standard deviation� for six diffe

Order of objects

TPVF

Abdominal CT Chest CT F

O1-O2-O3-O4 97.36%
1.12% 98.33%
0.26% 97.2
O1-O3-O2-O4 97.05%
1.19% 98.21%
0.29% 97.1
O2-O1-O3-O4 97.12%
1.20% 98.15%
0.32% 97.1
O2-O3-O1-O4 96.96%
1.21% 98.19%
0.31% 97.1
O3-O1-O2-O4 96.93%
1.25% 98.17%
0.29% 97.1
O3-O2-O1-O4 97.31%
1.15% 98.29%
0.29% 97.2
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recognition method is. It can be used to assess recognition
accuracy and to compare among methods. It also helps to
quantify the synergy in the method between recognition and
delineation. Experimental verification indicates that the
MOASM method almost always finds the global optimum
and performs better than OASM.

Some ideas underlying MOASM can be further improved.
First, the idea of creating an ordered sequence of the objects
included in MOASM is somewhat artificial since there is no
natural or meaningful sequential order for the objects. Our
motivation for the idea was to achieve object level optimiza-
tion within the existing computational framework of DP. Al-
though, as illustrated in Table VI, there seems to be little
variation in delineation accuracy when this order is changed,
a more appropriate formulation would have been to define a
complete graph of the objects for each 1���L, finding an
optimum spanning tree in each, and finally choosing the best
among the L optimal spanning trees. Second, in MOASM,
we have made the cost function BC object specific which
helps considerably in making recognition powerful via the
integrated cost function IC. The latter can be possibly further
improved by devising different cost functions for the section
of the boundary between each pair of successive landmarks
in each object. Since objects generally have interfaces with
multiple neighboring objects, this strategy may match the
cost function with the real variability in the characteristics
commonly observed along object boundaries.

In this paper, the focus was on 2D images. Although we
took 2D subsets of 3D images for illustration and evaluation,
there are many 2D imaging modes and 2D type applications
even in medical imaging where MOASM will be applicable.
Generalizing the techniques to 3D images is certainly not
trivial mainly from the view point of creating appropriate 3D
models for OASM. Once the models are built and a 3D de-
lineation algorithm is devised, then the above concepts are
directly applicable to 3D images. One way is to segment the
organ slice-by-slice, whose feasibility has been demonstrated
for 3D organ initialization.7 Alternatively, as demonstrated in
Ref. 31 for OASM, multiple 2D object assembly models
covering the body region can be employed to recognize and
delineate 3D objects in 3D images.
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