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 

Abstract—Objective: Non-rigid image registration with high 

accuracy and efficiency is still a challenging task for medical 

image analysis. In this work, we present the spatially 

region-weighted correlation ratio (SRWCR) as a novel similarity 

measure to improve the registration performance. Methods: 

SRWCR is rigorously deduced from a three-dimension joint 

probability density function combining the intensity channels with 

an extra spatial information channel. SRWCR estimates the 

optimal functional dependence between the intensities for each 

spatial bin, in which the spatial distribution modeled by a cubic 

B-spline function is used to differentiate the contribution of voxels. 

We also analytically derive the gradient of SRWCR with respect 

to the transformation parameters and optimize it using a 

quasi-Newton approach. Furthermore, we propose a GPU-based 

parallel mechanism to accelerate the computation of SRWCR and 

its derivatives. Results: The experiments on synthetic images, 

public 4-D thoracic computed tomography (CT) dataset, retinal 

optical coherence tomography (OCT) data, and clinical CT and 

positron emission tomography (PET) images confirm that 

SRWCR significantly outperforms some state-of-the-art 

techniques such as spatially encoded mutual information and 

Robust PaTch-based cOrrelation Ration. Conclusion: This study 

demonstrates the advantages of SRWCR in tackling the practical 

difficulties due to distinct intensity changes, serious speckle noise, 

or different imaging modalities. Significance: The proposed 

registration framework might be more reliable to correct the 

non-rigid deformations and more potential for clinical 

applications.    

 
Index Terms—non-rigid registration, spatially region-weighted 

correlation ratio, functional dependence, spatial distribution, 

GPU, parallel mechanism. 
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I. INTRODUCTION 

on-rigid image registration plays a more and more 

important role in a variety of applications, such as 

radiation assessment [1], disease surveillance [2], atlas-based 

segmentation [3], image-guided surgery [4] and so on. All these 

applications are based on plausibly correcting the spatial 

distortion between the corresponding anatomical tissues from 

different images. Over the nearly two decades, lots of non-rigid 

registration approaches have been proposed to estimate the 

dense deformation fields [5], [6].  

Currently, the most widely-used method estimates the 

alignment correspondences by optimizing an intensity-based 

metric. Mutual information (MI) [7], [8] is a popular metric and 

has been successfully applied to both mono-modal and 

multi-modal registration [9]. It is derived from information 

theory and quantifies the amount of statistical information that 

one image depends on the other. However, several recent 

studies have confirmed that the optimal alignment might be not 

corresponding to the hypothesis of intensity bin 

correspondence held by MI-based registration, especially for 

aligning images with intensity distortion or different modalities 

[10]-[12]. Embedding spatial information into the calculation 

of MI is an effective approach to improve the registration 

accuracy [13]-[19]. 

The most direct way was to estimate a high-dimensional MI 

by considering the neighbors of each voxel [13], [14]. This 

method required plenty of samples to ensure the accuracy of the 

joint entropy. Some studies incorporated the spatial 

information by combining MI with geometric features, such as 

image gradient [15] and 3D Harris operator [16]. However, for 

multi-modal registration, particularly when the image pairs 

have absolutely different representations for the same tissues, it 

is quite challenging to detect enough features in both two 

images. Recent approaches proposed to weight the MI metric 

using local structural information [11] or contextual similarities 

[12]. However, the computational complexity increased 

significantly due to the calculation of self-similarity or the 

detection of similar structures.     

Another strategy was to extend the 2-D intensity joint 

histogram with an extra spatial channel representing the 

location of the intensity pairs. For each spatial bin, this 

three-channel strategy calculated a local MI value with a given 

spatial distribution. Studholme et al. [17] firstly introduced this 

strategy to encode the location information and proposed  

regional mutual information (RMI) as a novel similarity 
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measure. RMI manually partitioned the image into a set of 

overlapping squares and mapped the spatial distribution to a 

boxcar function. The experiments on brain MR images showed 

that RMI was more robust to local intensity changes. Instead of 

subdividing regions over the whole image domain, localized 

mutual information (LMI) [18] provided a random partition 

mechanism where subregions were the neighborhoods of lots of 

stochastic points. However, both RMI and LMI assumed that 

the weights of voxels within each subregion were equal, 

regardless of their different coordinates. Conditional mutual 

information (CMI) [19] addressed this problem by fitting the 

spatial distribution to a tensor-product B-spline function. For 

each subregion, the weight of each voxel was associated with 

the distance to the center. The experiments on simulated, 

mono-modal and multi-modal data demonstrated that CMI 

obviously improved the registration accuracy compared with 

MI and RMI. Following the weighting scheme of CMI, 

spatially encoded mutual information (SEMI) [10] exploited 

the Gaussian function for spatial distribution and divided the 

image into a set of spheres. To reduce the registration time, a 

local ascent optimization framework was presented to 

minimize SEMI. Essentially, SEMI-based registration 

improved the efficiency at the cost of precision. It estimated the 

approximate derivatives using the voxels with larger weights, 

which greatly deteriorated the global convergence. 

Although these three-channel MI metrics have achieved 

satisfying performance for many applications, especially for the 

cases with spatial intensity changes, there are still some 

obstacles. One is the conflict between the reliable MI 

estimations and the local performance as for the regional size. 

In general, MI requires enough samples to ensure the statistical 

power, which means that the regional size should be as large as 

possible. However, the literature [10] concludes that the 

smaller the size of each subregion is, the better locality of the 

three-channel metric will be. To maintain the balance between 

the two advantages, SEMI-based registration employed a 

hierarchical weighting scheme which halved the regional size 

at each subsequent level. But this scheme did not solve the 

problem fundamentally. Additionally, due to the huge 

computational burden of MI [20], the computing time to 

estimate a series of local MI values is not practical.    

Correlation ratio (CR), first introduced by Roche et al. [21], 

[22], is an alternative intensity-based metric for image 

registration. With the hypothesis of a more restrictive 

functional mapping between the intensities, it is demonstrated 

to be with less computational complexity and more reliable to 

small sample sets [21], [22].  Recently, Rivaz et al. [23] 

incorporated the three-channel strategy into CR and presented 

Robust PaTch-based cOrrelation Ration (RaPTOR) algorithm, 

which estimated local CR values over small patches and 

accumulated these values to constitute a global cost function. 

Similar to LMI, RaPTOR randomly selected patches as spatial 

bins and fitted the spatial distribution to a boxcar function. 

Compared with LMI, it was more reliable in handling large 

intensity distortion due to the better locality performance.        

In this paper, we incorporate the spatial information of 

voxels into the functional dependence between the intensities 

and present the spatially region-weighted correlation ratio 

(SRWCR) as a novel similarity measure. The work of RaPTOR 

is acted as a starting point. RaPTOR maps the spatial 

distribution to a boxcar function, which is not accurate to 

express the location of the joint intensity pairs (see Section 

II-C). Additionally, RaPTOR employs a frequency statistics to 

simplify the derivation, which significantly reduces the 

stability for different datasets. In contrast, our proposed 

SRWCR is rigorously deduced from a 3-D joint probability 

density function (PDF). For each spatial bin, the contribution of 

different voxels is distinguished by a cubic B-spline function. 

Consequently, SRWCR is more effective in estimating the 

optimal mapping relationship between the intensities within 

each subregion. SRWCR not only inherits the robustness of 

RaPTOR to intensity distortion, but also becomes less sensitive 

to speckle noise and more suitable to align images with 

different modalities.    

In our previous work [24], we have obtained some 

preliminary results of SRWCR-based registration on a small 

retinal OCT dataset. Here, we extend this work as follows: 1) 

we investigate the three-channel strategy using different spatial 

distributions and provide a more principled description of 

SRWCR and its derivatives; 2) we combine the 

CUDA-programming with the three-channel strategy and 

propose a GPU-based highly efficient framework to speed up 

the calculation; 3) we perform more comprehensive 

assessments on four different datasets, including 3-D synthetic 

images distorted with initial bias fields, public 4-D thoracic CT 

scans with distinct intensity changes, 3-D retinal OCT images 

disturbed by strong speckle noise, and 3-D lung CT/PET scans.    

The rest of the paper is organized as follows. In the next 

section, we will give a detailed description of our method. The 

registration performance is then validated on several datasets in 

Section III, followed by a profound discussion presented in 

Section IV. And the final summary is listed in Section V.  

II. METHODS  

Let   3( , , ) | 0 ,0 ,0x y zx y z x y zN N N        x
 
denote 

the whole image domain, and then aligning a moving image M

to a fixed image F  can be formulated as an optimization 

problem which minimizes a cost function defined by      

              ( ( ), ( ( ; ))) ( ( ; ))p pC D F M T Tw C    x x x              (1) 

where D  is a similarity measure, and pC  is the constraint of 

the deformation fields that avoids implausible movements. pw  

is an experiential penalty weight and ( ; )T x  represents the 

transformation parameterized by  . We choose a free-form 

deformation (FFD) modeled by the location of cubic B-spline 

nodes to simulate the transformation. The spacings of the 

control nodes along the three directions are respectively set to
, ,x y z   . Therefore, 0 1( , , , )n     is a set of coordinates 

of all control nodes. In this work, we mainly focus on the 

construction of the accelerated-SRWCR (A-SRWCR). To 

simplify the calculation, the intensities of the fixed and moving 

images have been normalized between zero and the maximal 

intensity bin L . The flowchart of our algorithm, which adopts 

a GPU-based acceleration scheme, is shown in Fig. 1. 

A. Correlation Ratio (CR) 

CR is first introduced to the rigid alignment of multi-modal 

images by Roche et al. [21], [22]. For two images A  and B , 

CR assumes that all intensities of B  can be estimated by A  
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using an unknown function, and it measures the dispersion of 

the mapping relationship from this function.  

Supposing that 2
  is the variance of the estimated image B  

and ( )p a  denotes the marginal PDF of the model image A , and 

then CR takes the following form 

                         2
2

0

1
( , ) 1 ( ) ( )

L

a

CR A B a p a



 

                     (2) 

where  0,1, 2, ,a L  represents the discrete intensity bins 

associated to A , and 2( )a  is the conditional variance of B  

given a specific intensity bin a . CR varies between 0 and 1: the 

higher the value is, the more perfect the functional dependence 

is. Unlike MI, CR is asymmetric noted as ( , ) ( , )CR A B CR B A . 

Therefore, it is important to choose the proper estimated image 

B  from F  and M .    

B. Three-Dimension Joint Density Function 

The major drawback of CR is that it establishes a purely 

quantitative functional dependence between the intensities, but 

ignores the spatial information shared across the image. 

Following the three-channel strategy, we divide the whole 

image domain into a series of subregions labeled by 

 0,1, 2, , nr R R  , and assume that the possibility of voxel x

appearing in region r  is corresponding to a spatial distribution 

defined by ( , )w r x . Hence, a 3-D PDF can be defined using a 

weighted intensity statistics scheme        

         

1
( , , ) ( , ) ( ( )) ( ( ))p a b r w r h a A h b B

Z 

  
x

x x x                  (3) 

where  0,1, 2, ,a L  and  0,1, 2, ,b L , and r  can be 

viewed as the spatial bin corresponding to the label of 

subregion. Z  is a normalization factor. In essence, ( , , )p a b r  

represents the probability of a pair of intensity bins a  and b  

co-occurring in region r . According to the characteristics of 

the conditional probability, it can be re-written as the product of 

the probability of intensity pairs ( , )a b  within a given subregion 

r , called ( , )
r

a bp , 
 
and the probability ( )p r  that region r  occurs 

in the whole image domain, so that 

0 0( ) ( , , )L L

a bp r p a b r 
     

( , ) ( , , ) ( )
r

a b p a b r p rp                                     (4)
 

0( ) ( , )L

br r
a a bp p

                           

0( ) ( , )L

ar r
b a bp p

  . 

In this work, a second-order polynomial function designed 

by Xu et al. [25] which is smoother and more differentiable is 

used to estimate the joint histogram 

                   

2

2

1.8 0.1 1, 0 0.5

( ) 1.8 3.7 1.9, 0.5 1

0,

t t t

h t t t t

otherwise

    



    



 .                      (5) 

C. Encoding Location Information from Spatial Distribution 

According to (3), there are two key points to integrate the 

spatial information into the functional dependence: the way to 

partition the subregions and the specific expression of the 

spatial distribution. Similar to LMI, RaPTOR randomly selects 

points as the centers of subregions and maps the spatial 

distribution to a boxcar function  

                         
1,

( , )
0,

r

r

w r
 

 


x
x

x
                                     (6) 

where r  is the user-defined subregion corresponding to 

spatial bin r . Fig. 2(a) illustrates the spatial distribution with a 

given spatial bin in a 2-D image domain. RaPTOR assumes that 

the probabilities of voxels rx  are equal, without 

consideration of corresponding spatial coordinates. It therefore 

discards the topological relationship between these voxels and 

may lead to unrealistic deformations.                    

In this work, the cubic B-spline function which has been 

introduced into CMI is provided for ( , )w r x , with the same 

setting as FFD for control nodes and grid spacings. It holds that 

the weights of voxels rx  are monotonically decreasing 

with respect to their distances to the center of region r . By 

taking the control nodes of FFD as the centers and utilizing the 

, ,l m q -th degree B-spline basis function in each dimension, 

( , )w r x  can be given by     

3 3 3
, , ,( ) ( ) ( ),

( , )
0,

rl r x m r y q r z

r

x y z
w r

         
 



x
x

x
       (7) 

where , ,y ,( )r x r r z  ， ，
 
is the coordinate of control point ,r  

and 3
  represents the B-spline function listed in (8). Due to the 

limited span characters of the cubic B-spline function, the 

subregion r
 
is restrained to a 4 4 4x y z   

 
cuboid centered 

on r , as shown in Fig. 2(b).  

33
0

3 3 2
1

3 3 2
2

3 3
3

( ) 6(1 )

( ) (3 6 4) 6

( ) ( 3 3 3 1) 6

( ) 6

t t

t t t

t tt t

t t









  

   


    




 .                         (8) 

D. SRWCR 

1) Similarity Measure 

SRWCR computes a series of local CR values by estimating 

the regional statistical properties on each subregion, and adds 

 
Fig. 1.  Flowchart of our A-SRWCR based registration framework. The two 
dashed boxes indicate the parallel mechanism of the novel similarity measure 

and its derivatives, respectively.    



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2836380, IEEE Journal of
Biomedical and Health Informatics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

these local values to quantify how well the two images match. 

If we treat the labels of subregions as the indexes of spatial bins, 

SRWCR can be defined by a weighted scheme as follows 

0

2
2

0 0

( , ) ( , , ) ( )(1 ( , | ))

1
( ) ( ) ( )

R

R L

n

n

r

r r
r ar

D A B SRWCR A B R p r CR A B r

p r a ap







 

  

 
   

 

         (9) 

where 2 2, ( )r r a   are the regional variances estimated in a given 

spatial bin r . Referred to [22], they can be derived as follows     

22 2

0 0

2
20 02

( ) , ( ) ,

( , ) ( , )
( ) ( ), ( )

( ) ( )

L L

L L

r rr rr
b b

b br r
r r r

r r

b b bp pb

a b b a bp pb
a a a

a ap p

 

 



 

 

 

   

 
  

     

 (10) 

where ( ), (b), ( ,b)
r r r

a ap p p  are the regional PDFs defined in (4), 

r  and ( )r a  are the expectation and conditional expectation 

of B  estimated within the corresponding subregion r , 

respectively. 

 Integrating (10) into (9), we have      

22
2

0 0 0

1
( , , ) ( ) ( ) ( ) ( )

R L Ln

rr r
r b ar

SRWCR A B R p r b a ap pb
 


  

  
     

  
. 

 (11)

 

Due to the independency of ( )r a
 
and B , (11) can be 

simplified to a more concise form which contains the 

information of two intensity channels and a spatial channel  

 22

2
0 0 0

( )
( , , ) ( ) ( , )

R L Ln r

r
r a b r

ab
SRWCR A B R p r a bp

  

  

 
    
 
   

              
 22

2
0 0 0

( )
( , , )

R L Ln r

r a b r

ab
p a b r

  

  

 
    
 
 

.        (12) 

SRWCR is a dissimilarity measure and the registration 

accuracy immensely relies on choosing whether F  or M  to 

act as the estimated image B . It varies between 0 and 1: for 

registered images with functional intensity mappings, its value 

is close to 0. If we exploit a random partitioning scheme with a 

boxcar function to determine the spatial distribution, SRWCR 

will degrade into RaPTOR in virtue of some approximate 

reductions 

2
2

2
0 0

1 1 ( )
( , , ) ( ) ( )

R Ln

r

rr
r ap r r

B
RaPTOR A B R a ap

N N




   

 
     

 x

x
  (13)                                                                                            

with 

( ( )) ( )1
( ) ( ( )), ( )

( )

r

r

rr
r r r

h a A B
a h a A ap

apN N











  

x

x

x x
x .  (14)                                 

where pN  is the number of patches, and rN  is the size of each 

patch. RaPTOR just counts the frequencies to estimate ( )
r

bp

and 2
r . This approximation greatly weakens the differentiable 

property. In addition, instead of using a second-order function 

like (5), RaPTOR employs a linear function to estimate ( )
r

ap  

and ( )r a . It may cause artificial quantization errors of the joint 

histogram and deteriorate the registration performance. 

2) Accelerated-SRWCR 

A major limitation of the three-channel strategy is the large 

computational burden. However, the calculation process of 

each spatial bin is actually independent. In this section, we 

propose A-SRWCR to speed up the estimation by means of the 

graphics processing unit (GPU). 

It seems to be an efficient acceleration scheme that the 

regional joint PDF ( , )
r

a bp
 
of each spatial bin is stored in 

shared memory and each thread block directly computes a local 

CR value. But this scheme contains complex nested loop 

operations in the thread block, greatly decreasing the 

acceleration efficiency. Therefore, we separately calculate 

( , )
r

a bp
 
for each spatial bin using CUDA-programming, and 

the cumbersome loop operations are performed on the CPU. 

Table I gives the pseudo-code of our proposed A-SRWCR, in 

which the parallel acceleration can be found in line 1 and 2.  

Our CUDA implementation consists of two kernels. The first 

kernel transforms the moving image in terms of the location of 

the control nodes. Another kernel generates series of regional 

joint PDFs as outputs by maintaining a histogram per thread 

block. According to (7), since only voxels rx  have 

contribution to updating ( , )
r

a bp , we assign threads to  these 

voxels instead of the whole image domain. All regional joint 

PDFs are stored in global memory and the atomic function is 

employed to prevent the thread conflicts.     

Using the proposed A-SRWCR, we can significantly 

improve the matching performance quantification between two 

images. In next section, we analytically compute the 

derivatives of SRWCR to take the advantage of the 

gradient-based optimization framework. 

E. Gradient 

1) Analytical Derivations 

For an independent parameter vector  , the gradient of 

SRWCR can be separately computed as follows 

                     
0 1

, , , ,
s n

D D D D
D

   

    
   

     
 .                         (15) 

By means of the chain rule, a single component of the 

gradient can be deduced as follows 

( ; )

( ) ( ; )
|

( )
T

s s

D D M T

M



 




     
    

    
y x u

x

y x

y y
           (16) 

where ( )D M  y
 
is the derivative of SRWCR with respect to 

the intensity of current voxel, ( )M y y  is the gradient of the 

moving image, and sT  
 
denotes the Jacobian of the 

transformation parameter as calculated by (17). 

 
Fig. 2.  The spatial distributions of (a) the boxcar function and (b) the cubic 

B-spline function given an arbitrary spatial bin, respectively.   
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where 1, 1, 1,x y z x xx y z
x y z x xp p p                         , 

,y y z zy y z z             , 3  is the cubic B-spline 

function as defined by (8), and , ,i j k  are the indexes of current 

control node along the three directions. V  denotes the local 

region influenced by s .  

Considering that either A  or B  can be acted as the moving 

image, we severally compute the derivatives of (11) with 

respect to both A  and B . Firstly, if we view B  as ( )M y , 

( )D M  y
 
can be deduced as follows 

2
2

0 0 0

( ) ( )1
( ) 2 ( ) ( )
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R L Ln
r r

rr
r b ar

b apD
p r a apb

M B B
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   
     

   y y y
 

2

2
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(1 ( , | ))r

r

B
CR A B r





 
  



y
                            (18) 

where ( , | )CR A B r  denotes the local CR value as defined in (9).  

Referred to the reductions in Appendix I, (18) can be 

re-written as follows 
2 2

2
0 0 0

(1 ( , | ))( 2 ) 2 ( )1
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r r

r a b r

CR A B r b abD b b

M Z

   
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 y
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h
w r h a A 


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 
   

yx x                                    (19) 

where h  
 
represents the first-order derivative of the 

parzen-window function.  

Due to the asymmetric property of SRWCR, ( )D M  y
 
is 

completely different when A  is corresponding to the moving 

image. Similar to the above, we analytically derive the 

derivatives of (11) with respect to A  as follows 

2

2
0 0

( )( )( )
2 ( ) ( ) ( )
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(20) 

Referred to the reductions in Appendix II, (20) can be 

re-written as follows 
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y
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(21)     

2) Parallel Optimization 

According to (15), the gradient of SRWCR can be separated 

into a set of independent components, which is convenient to be 

accelerated using CUDA-programming. The challenge is how 

to parallel the calculation of (16) effectively.  

Our parallel mechanism contains two kernels. The first 

kernel implements the calculation of ( )D M  y
 
and ( )M y y

with respect to all voxels. Benefiting from the limited span 

characters of the cubic B-spline function, each voxel x  

belongs to the nearest 64 cuboids. Thus, we only focus on the 

corresponding 64 spatial bins to update ( )D M  y . Additionally, 

according to the parzen-window function defined by (5), only 

two nearby intensity bins of ( )A x  or ( )B x  have effects on the 

computation of (19) or (21). Another kernel performs the 

gradient of SRWCR by maintaining a single component of (15) 

per thread block. The outputs of the first kernel are stored in 

global memory as inputs and reused by all thread blocks.    

F. Implementation Details 

In this work, the bending energy of the deformation fields is 

acted as the constraint term pC , referred to [26] for more 

details. The backward warping is utilized to transform the 

images and the splatting algorithm with a Gaussian function is 

employed to invert the deformation fields. The multi-resolution 

strategy and the concatenation of three isotropic control grids 

are used to improve search efficiency.   

The experiential penalty factor pw  is set to 0.1 for 

mono-modal registration and 30 for multi-modal registration. 

The grid spacing at the finest level and the maximal intensity 

bin are chosen to be fixed for all experiments ( [5, 5, 5]   and 

31L  ) .         

 The minimization of the cost function is performed with the 

quasi-Newton limited-memory BFGS (LBFGS) provided in the 

liblbfgs package (http://www.chokkan.org/software/liblbfgs/). 

The number of Hessian corrections is set to 5, and the maximal 

iteration is set to 200, 200, and 120 for low, medium, and high 

resolution. The backtracking line search with a Wolfe condition 

is adopted. The optimizer is stopped when the metric value is 

stable within the last 20 steps or when the optimization reaches 

the maximal iterations.  

All experiments are accomplished on a PC equipped with 8 

GB RAM, Intel Core i7 3.4 GHz CPU and an NVIDIA Geforce 

TABLE I 

THE PSEUDO-CODE OF A-SRWCR. 

Input: the fixed image F , the moving image M , and the 

transformation parameters  . 

Output: the value of SRWCR E . 

1   transform the moving image M  in  the GPU;        

2   compute ( , )
r

a bp
 
for each spatial bin using (3) and (4) in 

the GPU;    

3   copy the series of regional joint PDFs from GPU to CPU; 

4  0E  ; 

5   for each spatial bin r R  

6    compute the marginal density functions ( )
r

ap  and          

( )
r

bp  using (4);      

7     compute the variance 2
 r  of the estimated image B

(either ( )F x or ( ( ; ))M T x u ) using (10); 

8       for 0 :a L  

9       compute the conditional expectation ( )r a  with a 

given intensity bin a  using (10); 

10     end for 

11     0cr  ; 

12      for 0 :a L  

13          for 0 :b L  

14                22 2( ) ( , ) rr r
cr a a bpb      ; 

15           end for 

16      end for 

17     ( )E p r cr   ; 

18   end for 

 

http://www.chokkan.org/software/liblbfgs/
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GTX 1060 graphics card. An executable tool of the presented 

algorithm is available online at 

https://github.com/Gonglun/Registration. 

III. RESULTS 

To evaluate the performance of A-SRWCR for non-rigid 

image registration, a number of tests are performed on synthetic 

images, public 4-D thoracic CT dataset, retinal OCT images 

and clinical lung CT/PET scans. All experiments are carried out 

following the principles of the Declaration of Helsinki, and 

approved by the volunteers and patients for publication. 

For each dataset, the proposed method is compared with the 

classical MI metric and two state-of-the-art three-channel 

metrics: SEMI and RaPTOR. Among them, the popular 

registration package Elastix [27] based on MI and the existing 

executable tool of SEMI can be severally downloaded from the 

homepages (http://elastix.isi.uu.nl/) and 

(http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/), 

and RaPTOR is accomplished following the idea of [23] using 

CUDA-programming. For clinical datasets without anatomical 

landmarks, the Hausdorff distance (HD) which quantifies the 

maximum distance between two outlines and the 

maximum-likelihood Hausdorff distance (MHD) [28] which 

quantifies the mean distance of all points are utilized to 

evaluate the accuracy of the alignment.  

A. Registration of synthetic images  

We evaluate the robustness of the four metrics to a bias field 

on ten synthetic image pairs. In this experiment, a 3-D binary 

black and white grid image with dimension 128 128 128   is 

aligned with a warped version of itself. For each image pair, the 

warped image is distorted with a B-spline transformation field, 

in which the control nodes   are initialized by a uniform 

distribution with the maximum amplitude of 15 voxels. The 

example slices illustrating the data are shown in Fig. 3. To 

quantitatively assess the registration accuracy, we compare the 

registered displacement of each voxel with the initial by 

computing the root mean square error (RMSE) over the whole 

image domain.     

Due to the asymmetric nature of SRWCR, the moving image 

M  can be set to either A  or B . Additionally, both the original 

image O  and the warped image W  can serve as M . 

Consequently, there are four different combinations. We first 

investigate the differences among the four combinations. As 

shown in Table II, the registration performance greatly depends 

on the combination, and the average RMSE ranges from 

0.78 0.07  voxels to 1.89 0.08  voxels. Therefore, in the 

following experiments, we randomly select a case from each 

dataset, and compare the accuracy of the four combinations to 

determine the optimal one.    

We also compare the registration accuracy of A-SRWCR 

with the other three metrics. As shown in Table III, our 

proposed metric achieves the lowest RMSE for each case, and 

outperforms the second best results ( 0.95 0.12  voxels) by 18%. 

This demonstrates the effectiveness of A-SRWCR in 

recovering the realistic deformations. Additionally, we also 

find that MI provides the worst result for each case, which 

verifies the robustness of encoding spatial information to a bias 

field. 

B. Registration of extreme inhale and exhale CT scans 

Image-Guided Radiation Therapy (IGRT) is one of the most 

effective technologies for the treatment of lung cancer. 

However, due to respiratory motion, it is crucial to construct a 

respiratory motion model by registering the images of different 

phases acquired from 4D-CT to a template image in advance. 

The treatment plan can be adjusted according to this model and 

the treatment effect will be improved.     

In this experiment, we investigate the registration 

performance of A-SRWCR on ten thoracic CT scan pairs 

between extreme inhale and exhale phase of a respiratory cycle, 

provided by the DIR database (https://www.dir-lab.com/). The 

scans have a slice thickness of 2.5 mm and an axial resolution 

ranging from 0.97 to 1.16 mm. Each DIR image includes 300 

anatomical landmarks manually annotated by clinical experts. 

The mean target registration error (mTRE) between these 

landmarks is severed as the quantitative index. It should be 

 
Fig. 3. Synthetic slices, distorted with known ground truth. (a) is the slice from 

the original image; (b) is the corresponding slice from the warped image; (c) is 

the difference between (a) and (b). 

TABLE II 
QUANTITATIVE ANALYSIS OF DIFFERENT COMBINATIONS. M IS THE MOVING 

IMAGE. A AND B ARE THE MODEL AND ESTIMATED IMAGES. O AND W ARE THE 

ORIGINAL AND WARPED IMAGES.  

Case RMSE [voxel] for each combination 

Initial M as B M as A 

W as M O as M W as M O as M 

#1 4.46 1.91 1.09 1.74 0.82 

#2 4.50 1.90 0.98 1.68 0.71 

#3 4.57 1.93 1.03 1.82 0.85 

#4 4.37 1.81 0.91 1.58 0.72 

#5 4.44 1.78 1.03 1.68 0.79 

#6 4.55 1.85 0.96 1.69 0.79 

#7 4.59 2.02 1.03 1.77 0.76 

#8 4.23 1.85 1.05 1.66 0.72 

#9 4.38 1.83 0.99 1.68 0.91 

#10 4.34 1.99 0.97 1.69 0.71 

Ave 4.44 1.89 1.00 1.70 0.78 

Std 0.11 0.08 0.05 0.07 0.07 

 

TABLE III 
QUANTITATIVE ANALYSIS OF SYNTHETIC DATASET 

 

Case 

RMSE [voxel] for each method 

Initial MI SEMI RaPTOR A-SRWCR 

#1 4.46 1.32 1.14 1.00 0.82 

#2 4.50 1.13 1.06 0.97 0.71 

#3 4.57 1.37 1.19 0.96 0.85 

#4 4.37 1.18 1.08 0.97 0.72 

#5 4.44 1.36 1.20 1.05 0.79 

#6 4.55 1.15 1.01 0.84 0.79 

#7 4.59 1.20 0.98 0.84 0.76 

#8 4.23 1.18 1.00 0.78 0.72 

#9 4.38 1.38 1.21 1.19 0.91 

#10 4.34 1.39 1.17 0.87 0.71 

Ave 4.44   1.27 1.10 0.95 0.78 

Std 0.11 0.11 0.09 0.12 0.07 

 

http://elastix.isi.uu.nl/
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/
https://www.dir-lab.com/
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noted that the changes in lung volume due to ventilation are 

expressed as the differences in corresponding voxel values 

during the respiratory cycle [29]. This means that the intensities 

of air and vessels between extreme inhale and exhale phase can 

suffer from distinct changes [30]. Therefore, we not only need 

to correct location deformations, but also should take large 

intensity distortion into account.  

Table IV shows the final mTRE results for the ten cases 

obtained by the four metrics. We also include the results 

reported in a recent literature [30] which focuses on aligning 

images with strong intensity distortion. It is observed that 

A-SRWCR generates the best results for all cases except case 

#7 and significantly decreases the average mTRE from 

8.46 3.33  mm to 1.66 0.53  mm, which outperforms the 

second best result (1.89 0.89  mm) by 12%. This improvement 

shows that A-SRWCR is more reliable in registering images 

with distinct intensity changes. Especially for case #8, 

A-SRWCR successfully corrects the deformations, which is far 

better than others. It verifies the advantages of our method in 

recovering large deformations. Although all metrics greatly 

reduce the errors between the landmarks for each case, the 

three-channel metrics have a more clear decrease compared 

with MI ( 2.60 1.35 mm). It confirms the effective performance 

of this three-channel strategy to intensity fluctuations. 

Additionally, we also notice that SEMI gives the second 

highest mTRE value ( 2.34 1.21  mm). The main reason is that 

SEMI requires more samples in each subregion to ensure the 

reliable estimations. Consequently, it is more sensitive to large 

intensity bias. 

A representative example of the aligned slices using different 

metrics has been visualized in Fig. 4. To display lung vessels 

clearly, the image intensities are clipped to [50, 750] HU 

interval. Fig. 4(a) and (b) severally show a slice from the fixed 

image and the corresponding slice from the moving image, 

while Fig. 4(c)-(f) illustrate the corresponding slices after 

registration by the four metrics. The region of interest (ROI) in 

each slice is marked by a red rectangle and magnified 2 times. 

Compared with ROI in the fixed slice (Fig. 4(a)), MI (Fig. 4(c)) 

fails to recover the deformations of the middle vascular branch, 

while RaPTOR (Fig. 4(e)) provides an excrescent vascular 

branch in the upper-right corner, pointed to by the yellow 

dashed circle. Moreover, SEMI (Fig .4(d)) yields a much longer 

vessel in the upper area. As shown in Fig. 4(f), A-SRWCR 

obviously improves the registration accuracy of these subtle 

tissues. It further indicates that our method is more robust to 

intensity distortion and better in capturing the deformations of 

small vessel structures.    

C. Registration of 3-D OCT frames    

Retinal OCT is a non-invasive imaging technology, and the 

longitudinal registration between multiple OCT images 

acquired from the same subject at different time allows for 

monitoring the development and assessing the efficacy of 

many eye diseases. However, due to the coherent detection 

characteristics, OCT images are accompanied with strong 

speckle noise and inherently own a low signal-to-noise ratio 

(SNR) [31]. Fig. 5 illustrates a B-scan view of 3-D OCT image, 

in which most voxels are background polluted by strong noise.   

In this experiment, we investigate the performance of the 

four metrics on low SNR retinal OCT dataset, collected from 

ten healthy volunteers using Topcon 3D-OCT 1000 scanner. 

Each volunteer collects two 3D OCT sets at interval of one 

TABLE IV 
QUANTITATIVE ANALYSIS OF 4D-CT DATASET 

 

Case 

TRE [mm] for each method 

Initial MI SEMI RaPTOR Alost[30] A-SRWCR 

#1 3.89 1.23 1.06 1.09 _ 1.00 

#2 4.34 1.15 1.07 0.99 _ 0.95 

#3 6.94 1.92 1.87 1.89 _ 1.34 

#4 9.83 1.81 1.78 1.54 _ 1.40 

#5 7.48 2.52 2.38 2.23 _ 1.78 

#6 10.89 2.42 2.04 1.95 _ 1.66 

#7 11.03 3.92 3.19 1.96 _ 2.46 

#8 14.99 5.65 5.19 3.62 _ 1.84 

#9 7.92 3.05 2.89 2.92 _ 2.50 

#10 7.30 2.29 1.96 1.89 _ 1.69 

Ave 8.46   2.60 2.34 2.01 1.89 1.66 

Std 3.33 1.35 1.21 0.79 0.89 0.53 

 

 
Fig. 4. A slice from the registration pair of case #1. (a) is the slice from the 
fixed scans;  (b) is the corresponding slice from the moving scans; (c), (d), (e), 

and (f) are the corresponding slices from the aligned scans obtained by MI, 

SEMI, RaPTOR, and A-SRWCR, respectively.  

 
Fig. 5. A slice of 3-D OCT image and 10 retinal layers with 11 surfaces. 
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month. The scans are comprised of 512 992 256   voxels with 

a resolution of 11.72 2.62 23.44   μm
3
. Each image is 

automatically segmented into 10 retinal layers with 11 surfaces 

(see Fig. 5) by using a graph search based surface detection 

algorithm [32], and the segmentation accuracy is identified by 

ophthalmologists. For each pair (the same volunteer collected 

at different time), the mean HD and MHD values of 11 surfaces 

after registration are employed to quantify the alignment 

accuracy. Due to the limitation of GPU memory, we first 

register two down-sampling images with dimension 

512 512 128 ,  and then up-sample the deformation fields to 

the original resolution.  

As listed in Table V, A-SRWCR produces the lowest MHD 

for all cases, and greatly reduces the average MHD from 

158.62 194.39  μm to 34.98 5.33  μm. Although the HD values 

in cases #2 and #9 are slightly higher than the optimal results, 

A-SRWCR yields a statistically significant improvement with 

the lowest average HD ( 256.11 76.47  μm). It demonstrates 

that A-SRWCR is more robust to speckle noise. Especially for 

case #4, in which the initial OCT images are completely 

mismatched, the outcomes obtained by A-SRWCR are still 

around the average values, while all contrast algorithms 

converge to the invalid local optima. It further confirms that 

A-SRWCR is more potential to correct large deformations even 

in the presence of strong speckle noise. There are two reasons 

for the excellent performance of our proposed metric. First, CR 

estimates an optimal function to map voxel pairs with the 

smallest distance in intensity space, which is verified to be less 

sensitive to noise [33]. Second, compared with the boxcar 

function, the cubic B-spline function preserves the topological 

relationship between the voxels within each subregion. It is 

therefore more reliable to find the optimal functional 

relationship even if the region is seriously polluted by noise.      

Additionally, it might be confusing that the performance of 

SEMI is even worse than MI. The reason is that most 

subregions contain little retinal structural information, and 

some may even be all noisy. Consequently, the local MI values 

estimated over these subregions do not reflect the intensity bin 

correspondence of retinal tissues.   

To make the results of A-SRWCR more convincible, a 

qualitative comparison of the C-scan view which contains 

retinal vessels is illustrated in Fig. 6. Fig. 6(a) and (b) are the 

fixed and corresponding moving slices, respectively. Fig. 

6(c)-(f) show the checkerboard images which alternately 

arrange the fixed and registered slices. It can be seen that SEMI 

(Fig. 6(d)) gives the worst registration result since the vessels in 

both two ROIs are broken. Moreover, MI (Fig. 6(c)) provides a 

good alignment of the vessel within the yellow ROI, but 

completely fails in the red ROI. In contrast, RaPTOR (Fig. 6(e)) 

provides a more continuous vessel within the red ROI, but fails 

in the yellow ROI. As shown in Fig. 6(f), A-SRWCR clearly 

improves the registration accuracy of the retinal vessels, thus 

further verifying that A-SRWCR is more suitable to register 

images with strong speckle noise.            

D. Registration of lung CT/PET images  

Non-rigid multi-modal registration is also an insurmountable 

obstacle for many applications. In this experiment, we apply 

our proposed method to a clinical lung database collected from 

ten patients. Each patient has been scanned by PET-CT and 

high quality diagnostic CT at different time. Due to the 

different scanning protocols, the diagnostic CT scans acquired 

from Siemens Somatom have a slice thickness of 5 mm and an 

TABLE V 

QUANTITATIVE ANALYSIS OF 3D OCT DATASET 

 

Case 
MHD [μm] obtained by different methods for each case HD [μm] obtained by different methods for each case 

Initial MI SEMI RaPTOR A-SRWCR Initial MI SEMI RaPTOR A-SRWCR 

#1 49.46 39.44 42.35 33.29 31.90 268.58 239.78 210.21 220.35 183.11 

#2 108.61 51.30 49.02 36.53 34.21 436.42 498.14 275.77 283.52 296.49 

#3 82.82 35.59 40.73 37.94 34.68 419.54 235.16 231.15 280.09 200.58 

#4 702.18 53.18 60.49 64.87 40.07 1796.23 387.88 731.34 700.67 262.93 

#5 56.47 37.64 39.47 38.22 33.72 264.28 292.38 238.52 319.89 163.52 

#6 114.69 55.38 75.81 51.15 39.94 625.79 401.25 512.81 578.14 301.46 

#7 125.82 60.03 72.39 48.05 45.14 584.59 510.46 592.63 415.45 387.47 

#8 171.53 46.27 44.85 54.97 33.26 520.67 368.47 341.09 649.63 335.82 

#9 68.83 35.36 35.1 35.33 29.21 335.25 338.62 204.96 362.30 264.31 
#10 105.75 31.28 33.23 29.69 27.62 427.41 201.52 187.68 275.38 165.37 

Ave 158.62 44.55 49.34 43.00 34.98 567.88 347.37 352.62 408.54 256.11 

Std 194.39 9.97 15.13 11.22 5.33 448.40 106.91 191.43 172.42 76.47 

 

 
Fig. 6. Checkerboard images with a C-scan view using the four metrics. (a) is the 

slice from the fixed scans;  (b) is the corresponding slice from the moving scans; 
(c), (d), (e), and (f) are the corresponding checkerboard images obtained by MI, 

SEMI, RaPTOR, and A-SRWCR, respectively.  
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in-plane resolution around 1.20-1.46 mm, while the PET scans 

acquired from the integrated PET-CT scanner Siemens 

Biograph 64 have a resolution of 4.07 4.07 3  mm
3
. To 

improve the registration efficiency, each pair has been 

resampled to a uniform resolution with 3 mm slices and the 

same in-plane resolution as CT image. Moreover, a rigid 

registration of all cases using A-SRWCR with the rigid 

transformation model is performed to recover global 

deformations. Since it is quite difficult to manually select 

landmarks that can be observed both in CT and PET images, the 

MHD and HD values between the lung surfaces are provided 

for quantitative comparison of the registration accuracy.  

Table VI shows the quantitative results achieved by the four 

metrics. Although the MHD or HD values obtained by 

A-SRWCR are not the lowest for some cases, such as case #7 or 

#9, our method has a statistically significant improvement over 

the ten cases, and achieves the lowest average and standard 

deviation values ( 3.70 0.52 mm for MHD, 30.25 5.22 mm for 

HD). It demonstrates that A-SRWCR is more stable to align 

CT/PET images. Especially for cases #1 and #10, the 

comparative methods completely fail to align the point pairs 

with maximal displacement, whereas A-SRWCR greatly 

reduces the HD values. Additionally, we also find that the 

registration performance of the MI-based metrics is much 

worse than the CR-based metrics. In CT images, there is one 

intensity bin for several structures, but the intensities of these 

tissues might correspond to a number of intensity bins in PET 

images. Consequently, the optimal alignment of these tissues 

does not obey the hypothesis of the intensity bin 

correspondence. In contrast, RaPTOR and A-SRWCR quantify 

the functional dependence between the intensity values instead 

of the intensity bins. They are therefore more potential to 

register CT/PET images. However, due to the approximate 

reductions, RaPTOR is less stable and yields larger standard 

deviation values. 

Fig. 7 illustrates a representative example of fusion images 

with a coronal view, in which the PET images have been 

enhanced with green for better observation. By comparing the 

ROI marked by the red rectangle, it is obvious that A-SRWCR 

provides more accurate alignment of the lung diaphragm than 

the other three methods.     

E. Experiments of GPU Acceleration 

In this experiment, we validate the acceleration performance 

of the parallel mechanism. According to our proposed 

framework, there are four CUDA kernels performed on the 

GPU during each iteration. First, kernel 1 reads the initial 

transformation parameters and the moving image from the 

RAM, and outputs the transformed image to the RAM. Then, 

kernel 2 reads the fixed image from the RAM and outputs the 

regional joint PDFs to the RAM. Third, kernel 3 accomplishes 

the computation of ( )D M  y  and ( )M y y
 
for each voxel. 

Finally, kernel 4 outputs the gradient of SRWCR to the RAM. 

Table VII shows the memory bandwidth occupied by each 

kernel at the finest deformation level. The results are measured 

by Visual Studio Nsight. For each kernel, we reach around half 

of the theoretical peak bandwidth, which is 192.2 GB/s. 

Especially for kernel 3, the efficiency is up to 56.7%.  

Table VIII lists the computational time of SRWCR and its 

derivatives taken by the CPU and GPU during one iteration 

 
Fig. 7.  Visualization of the fusion images with a coronal view. (a) is the slice 
from CT scans; (b) is  the corresponding slice from PET scans; (c), (d), (e), and 

(f) are the corresponding fusion images obtained by MI, SEMI, RaPTOR, and 

A-SRWCR, respectively.     

TABLE VII  
QUANTITATIVE ANALYSIS OF MEMORY BANDWIDTH 

kernel 1 2 3 4 

Bandwidth (GB/s) 94.31 81.46 108.99 95.28 

Efficiency (%) 49.07 42.38 56.71 49.57 

 

 

TABLE VI 

QUANTITATIVE ANALYSIS OF CT/PET DATASET 

 

Case 

MHD [mm] obtained by different methods for each case HD [mm] obtained by different methods for each case 

Initial MI SEMI RaPTOR A-SRWCR Initial MI SEMI RaPTOR A-SRWCR 

#1 10.30 6.71 6.07 4.72 4.22 62.54 60.55 65.90 46.45 28.91 

#2 13.25 5.12 4.27 5.30 3.71 70.13 36.23 36.19 29.69 28.82 

#3 4.12 3.32 3.28 2.59 3.14 30.77 31.26 34.42 27.47 25.42 

#4 7.52 3.67 4.14 4.33 4.12 43.91 30.58 31.97 26.83 23.58 

#5 11.91 5.34 4.49 4.93 4.47 71.38 45.42 48.82 44.89 40.95 

#6 8.79 4.96 4.52 4.04 4.02 78.01 44.09 49.68 30.03 31.85 

#7 5.66 2.93 3.43 3.02 3.37 36.45 25.82 26.56 25.66 27.34 
#8 10.03 3.80 3.24 3.40 2.75 58.19 26.53 27.07 27.44 27.38 

#9 7.72 3.66 3.24 3.16 3.56 47.94 32.16 39.49 32.49 36.36 

#10 9.26 5.70 5.64 4.41 3.63 54.07 54.93 63.31 43.77 31.87 

Ave 8.86 4.52 4.23 3.99 3.70 55.34 38.76 42.34 33.47 30.25 

Std 2.75 1.22 1.00 0.90 0.52 15.63 12.42 14.10 8.94 5.22 

 



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2836380, IEEE Journal of
Biomedical and Health Informatics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

with different image sizes. The calculation speed of our 

paralleled scheme has a significant improvement compared 

with that of the CPU. It might be puzzling that the acceleration 

rate of SRWCR is much lower than that of its derivatives. The 

main reason is due to the atomic operations, which enforce the 

threads serialize access to the same address and seriously 

diminish the parallel efficiency.    

Fig. 8 illustrates the average registration time for four 

datasets. Considering that the public 4D-CT dataset contains 

two different in-plane dimensions ( 256 256  and 512 512 ), 

we compute each average value separately. Relying on the 

dataset to be registered, execution time consumed by our 

method ranges from 3 to 37.2 minutes, which is approximately 

24 times less than the CPU-based registration. It successfully 

confirms the impact of our parallel mechanism. 

IV. DISCUSSION 

MI is an extensively used similarity measure which aims to 

maximize the amount of shared information between two 

images. However, when confronted with practical challenges 

such as intensity distortion or different imaging modalities, it 

may lead to undesired results. SEMI and RaPTOR are two 

state-of-the-art techniques which encode the spatial 

information into the statistical intensity relationship and greatly 

improve the robustness to these challenges. But there are still 

some drawbacks for both two methods. SEMI is sensitive to the 

size of subregion, and thereby its local performance is 

significantly limited. RaPTOR, which assumes that the spatial 

distribution is corresponding to a boxcar function, is unable to 

differentiate the contribution of voxels within each subregion.        

In this work, we introduce A-SRWCR, a novel similarity 

measure that incorporates the spatial information into the 

functional mapping relationship. A-SRWCR starts from a 3-D 

PDF which extends the intensity dimensions with a spatial 

channel, and then estimates local CR values give the spatial 

distribution modeled by a cubic B-spline function. We also 

design an efficient parallel mechanism to overcome the 

shortcoming of huge computation burden.  

We perform an extensive comparison of our proposed 

method and the three metrics: MI, SEMI and RaPTOR. 

Experiments with synthetic images provide the evaluation of 

both accuracy and robustness to bias fields. Application in DIR 

dataset demonstrates the effectiveness of A-SRWCR in 

registering images with distinct intensity distortion. The 

optimal alignment of lung vessels shown in Fig. 4 further 

demonstrates that A-SRWCR could provide a more accurate 

respiratory motion model for IGRT. Experiments with OCT 

scans show an objective comparison of the robustness of the 

four metrics to speckle noise. The lowest HD and MHD values 

listed in Table V imply that A-SRWCR is more reliable in 

analyzing the thickness variations of retinal layers, which is 

specifically useful in the surveillance of multiple sclerosis (MS) 

[34]. The highest accuracy illustrated in Fig. 6 also verifies that 

the presented metric is more suitable for the assessment of 

choroidal neovascularization (CNV), an eye disease caused by 

vasculopathy. For multi-modal registration validated with 

clinical CT/PET scans, A-SRWCR also provides a statistically 

significant improvement over all other three metrics.             

Several reasons account for the excellent performance of 

A-SRWCR. First, similar to RaPTOR, A-SRWCR is a local 

similarity measure. Although it may be over-constrained to 

map all intensities between two images using one function, it is 

more feasible to assume a functional dependence between 

intensities within a subregion, especially for small region. 

Second, in virtue of the cubic B-spline function, the intensity of 

each voxel is weighted in terms of the distance to the center of 

subregion. It is therefore more reliable in estimating one-to-one 

mapping relationship for each region. Third, we rigorously 

deduce A-SRWCR from a three-channel joint PDF which is 

estimated by a second-order polynomial function. It ensures 

that the presented metric is more accurate to measure the 

difference between two images and more differentiable. 

Recently, the symmetric diffeomorphic transformation 

model which ensures the reversible spatial deformations has 

been successfully incorporated into some similarity measures 

and significantly improves the registration accuracy [35], [36]. 

In the future, we will investigate the potential advantages of 

combining A-SRWCR with this symmetric diffeomorphic 

framework on more challenging applications such as the 

diseased OCT images.   

V. CONCLUSION 

We have presented SRWCR as a novel similarity measure 

for non-rigid registration, and sped up the computation of 

SRWCR and its derivatives using CUDA-programming. The 

experiments on both mono-modal and multi-modal datasets 

have shown that A-SRWCR is very stable and outperforms the 

existing methods such as MI, SEMI or RaPTOR. With more 

accurate matching performance and higher speed, our proposed 

registration framework is more suitable to handle the clinical 

challenges.       

 
Fig. 8.  Average execution time for four datasets. 

 

TABLE VIII 
COMPUTATION TIME DURING ONE ITERATION FOR DIFFERENT IMAGE SIZE  

 

Image size 

SRWCR Derivatives 

CPU (ms) GPU (ms) Acceleration rate CPU (ms) GPU (ms) Acceleration rate 

64×64×24 327 21 15.6 297 4 74.3 

128×128×49 2278 132 17.3 2153 32 67.3 

256×256×99 18533 851 21.8 16989 238 71.4 
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APPENDIX I 

Here, we derive (19) from (18) in detail. The key is to 

compute the derivatives of 2 , ( )r r a  with the respect to ( )B y . 

Therefore, we first compute them independently. 
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Since ( )
r

ap  is independent in ( )B y , ( ) ( )r a B  y
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calculated as follows   
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Combining (22) and (23) with (18), we obtain 
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After merging the same items, (24) can be simplified as 
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                                                                                            (25)  

In virtue of the chain rule, the derivative of the 3-D joint PDF 

defined by (3) can be deduced as follows 
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Combining (25) with (26), we have 
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APPENDIX II 

According to (20), we first compute ( ) ( )r a A  y  as follows 
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Incorporating (28) into (20), ( )D M  y  can be re-written as 
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Similar to (25), (29) can be simplified as follows 
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