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A B S T R A C T

We propose an image registration method to suppress the speckle noise in retinal optical coherence tomog-
raphy(OCT) adapted to single-line HD mode hardware implementation. In single-line HD mode, multiple
cross-section images at the same straight scan line are obtained repeatedly and rapidly for averaging the
speckle noise. Not like static objects, cross-section retinal images are often blurred by direct averaging due
to unintentional eye/head motions in axial and horizontal directions. An image registration method which
combines regularized dynamic programming algorithm with hill-climbing algorithm is demonstrated to correct
axial and lateral motion shifts efficiently. The unaligned images are discarded automatically using a criterion
based on probability densities of image gray levels. Finally, an adaptive gamma correction method is adopted
to adjust the contrast of averaged OCT image for better retinal feature visualization. The experimental results
of the algorithm based on our lab-built OCT setup show the improvement of image quality. The method is
automatic and rapid which is potential to be applied in the OCT imaging with micro-motion targets.
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1. Introduction

Optical coherence tomography(OCT) as an in vivo, high resolution
and high speed imaging modality, has been widely applied to show
cross-sectional structure profiles for biological tissue [1,2]. Due to the
transparency of human eyes, OCT is regarded as the ground truth
in the field of ophthalmology, especially in the assistant diagnosis of
retina diseases, such as glaucoma, macular hole, age-related macular
degeneration, etc [3–5].

High quality OCT images with suppressed speckle noise are pur-
sued for detailed observation of retinal layer structure in the oph-
thalmology clinical application [6–8]. The speckle noise is inherent
and caused by the interference of light waves scattered by different
scattering particles existing in the biological tissue [9]. Some hardware-
based optical system design methods are proposed for OCT speckle
reduction, which depend on acquiring different uncorrelated speckle
patterns for averaging or compressing the sample to create speckle by
angular compounding [10,11], frequency compounding [12], spatial
compounding [13] and strain compounding [14]. In adaptive optics
OCT(AO-OCT), wavefront sensing and wavefront correction devices are
employed which can set the focus at the selected layer to reduce the
imaging speckle as well as the limited depth of focus [15]. However,
these approaches need complicated modifications and additional data
acquisition, which are hard to be implemented directly in clinical
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ophthalmology OCT scanners. Regarded as post-processing approaches,
software-based methods rely on filtering or reconstructing the obtained
cross-section image(also called B-scan). The methods based on spatial
filtering aim to smooth every single B-scan to filter out the influences
of speckle noise, such as Wiener filtering [16], bilateral filtering [17],
anisotropic diffusion filtering [18]. But these methods may have over-
fitting and over-smoothing problems. In addition, methods based on
sparse transform like wavelet [19,20], curvelet [21] and dictionary
learning [22,23] have achieved good performance in noise reduction
but also have some problems, such as insufficient image feature repre-
sentation, difficult threshold selection, and time-consuming dictionary
learning. Moreover, statistical model-based methods are also common
for image denoising [24,25]. But the existing statistical models are
mostly univariate and may not consider all the key information like
neighboring pixels into the model. The low-rank decomposition meth-
ods [26,27] are effective in OCT images denoising as well but it relies
on local similarity. In the last few years, deep learning networks for
despeckling OCT images are also introduced due to their high perfor-
mance in many computer vision tasks. Deep learning networks treat
the denoising problem as a pixel-regression task and try to explore
the mapping relationship between the origin and denoisd image pair.
The OCT slices from any imaging mode can be despeckled after the
inference of the trained model and the inference time is relatively
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low. The structural information is paid more attention to because
of the special design of the loss function and training module. Mao
et al. [28] proposed deep convolutional encoder–decoder networks
with symmetric skip connections but it needs long-term dependency.
Zhang et al. [29] assume that OCT speckle noise is additive noise and
proposed a network structure with residual blocks. Abbasi et al. [30]
proposed a multi-input fully-convolutional networks (MIFCN) to further
improve the performance. Ma et al. [31] proposed a cGAN based
network that focused on the edge information to a greater extent.
Guo et al. [32] proposed an end-to-end structure-aware noise reduc-
tion generative adversarial network (SNR-GAN) which achieved subtle
structural preservation. However, all the deep learning studies require
a large amount of OCT data for training which would limit the potential
applications. Furthermore, the deep learning methods take images after
averaging as ground truth and the result of the methods can only be
close to the ground truth but cannot exceed.

Besides the independent hardware-based and software-based meth-
ods, there is a mixed way to generate the HD OCT image in many
OCT applications. A specific mode (often called as single-line HD
mode) is designed to obtain B-scans of the same retinal location by
quickly repeating the scan multiple times along only one straight scan
line. Considering the laser safety limit and to avoid large eye/head
movements, the total scan time is often limited to less than 2.5s. In
the limited time, 20∼50 B-scans are recorded according to the pixel
number and exposure time setting. Then such B-scans are averaged to
generate a B-scan with higher quality by suppressing random speckle
noises in each B-scan.

However, the OCT image shifts at ten micrometer scale caused
by eye/head movement can still be observed in many cases which
obstruct the direct averaging. Many works were demonstrated to cor-
rect the motion artifacts before multiple B-scans averaging. Jorgensen
et al. [33] reported an algorithm based on the regularized dynamic
programming with an iterative framework, which is the first to correct
both axial and lateral displacements. But given that the framework
needs to align multiple B-scans in one iteration, it cannot correct large
lateral displacements with the consideration of computational time.
Alonso-Caneiro et al. [34] proposed a registration method that relies on
the affine-motion scheme. This method involves image transformations
of higher degrees but the registration accuracy needs to be improved
especially in local areas. Zhang et al. [35] combined the above two
methods and reported a two-step image registration method to reduce
the speckles in OCT images. This method improves the registration
accuracy to a large extent and avoids the discontinuities in the retinal
layers. But in the local step, the regularized dynamic programming
algorithm is only able to correct the axial shifts, and the lateral dis-
placements may still exist. Also, the local registration is easily affected
by the global step and it may cause mistakes in the margin. It should
be noted that image registration has been proposed as eye-motion
correction methods in many OCT applications, which is independent
of hardware implementation [36–39]. Especially, image registration
like the strip-based registration method is a standard practice in AO-
OCT to produce the cell scale resolution OCT images [40,41]. These
approaches are aimed at correcting the axial and lateral misalignment
of 3D OCT volume data, thus achieving good visualization of the cone
mosaic pattern in a small field of view (FOV) [42,43]. The 3D OCT
volume data is acquired by raster scan mode at a high A-scan rate, and
the B-scans are obtained at different locations. However, in this paper,
the input data is acquired by single-line scan mode at a low A-scan
rate with large FOV, which means the B-scans should be obtained at
the same location, and the eye movement will become apparent.

To correct the apparent axial and lateral shifts rapidly and robustly,
in this paper we proposed a modified registration method using hill-
climbing algorithm and dynamic programming algorithm. Dynamic
programming is known for its efficient computation to find the shortest
path in a global problem which is used to correct the axial shift
firstly. Hill-climbing algorithm can accurately obtain the optimal po-

sition especially for the large registration range. The combination of i

2

these two methods can register full alignment with high speed and
high accuracy. In addition, if the eye movement/rotation exceeds the
registration range threshold, the images may not be aligned well and
will blur the edges in the averaging. An algorithm called de-ghosting is
proposed to remove the images to ensure the sharpness of boundaries
of retina layers. In the de-ghosting process, the blurred shadow areas
are recognized by the brightness of the difference image which is
obtained by subtracting the unaligned image with the baseline image.
An adaptive gamma correction with weighting distribution(AGCWD)
method is applied to further improve the contrast of the image. The
overall algorithm is automatic and has a good generalization ability
for correcting the motion-induced image shifts in single-line HD mode
imaging of clinical OCT applications. Compared to other methods (sta-
tistical model, low-rank decomposition, deep learning etc), our method
tries to solve the denoising task from the image itself. So it does
not need to consider such problems like insufficient image feature
representation, retinal boundary information, lots of training data, and
so on. As a light-weighted, fast, robust image processing algorithm, it
does not consume much hardware resources, thus having great clinical
application potential.

2. Methods

.1. Single-line HD mode

The retinal OCT devices usually provide several different scan
odes for particular purposes. The scan patterns can be divided into
types by the shape: single line, multiple lines, rectangle area. At the

ame exposure duration, in the single line and multiple lines mode,
he scan lines are often repeated to fulfill the total scan time for
ross-section images with higher quality.

In the single-line mode, the position and direction of the scan line
an be tuned to cross the specific zone guided by the fundus preview
mage. The scan lines often repeat 20∼50 times according to the

exposure duration and numbers of A-scans. The averaging of multiple
B-scans at the same position can produce high qualified images. This
mode is often called as HD mode and benefits to observe suspicious
lesions.

In the multiple lines mode, the scan pattern is a number of lines
equally spaced in the horizontal, vertical or radial direction. It de-
creases to repeat 3∼5 times at the same location with the increased
scan line numbers.

In the area mode, the raster scan often covers a rectangular area
containing more than 100 B-scan slices to produce a 3D image. It
cannot repeat all the scans because of the time limit. The quality of OCT
images cannot be improved by images averaging, but mainly depend on
the digital image processing algorithm like filtering, deep learning etc.

Each scan mode of retinal OCT devices leads to different clinical
pplications. In this paper, we demonstrate a way to produce a high-
ualified OCT image in single-line HD mode by averaging the denoised
-scans at the same scan position.

.2. Image averaging method

In single-line HD mode, we reconstruct and denoise the B-scans
rom rawdata like other modes. But an additional method is further
roposed to obtain the despeckled image with better visualization
f retinal features by averaging B-scans rapidly and accurately. The
verall flowchart is shown in Fig. 1.

In the following, we will present the procedures of the image
veraging method:
, determine a template image as a baseline to align the rest images.
good baseline can accelerate processing speed and accuracy. A tem-

late image which is most similar to all the B-scans is determined by
alculating the cross-correlation coefficient of the B-scans. The template
mage is used in both axial and lateral shift correction.
 128
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Fig. 1. Flowchart of proposed algorithm. Intermediate results are shown in Figs. 3, 4, 5.
Fig. 2. Examples of images in one set of OCT data. (a) The template image selected in the data set. (b) An image with slight eye movement during shooting compared to (a). (c)
An image with the retina blocked by eyelashes. (d) An image of missing retinal structure due to blinking.
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2, correct the vertical shifts. The vertical shifts are corrected using
dynamic programming for axial motion correction. The graph-based
method takes neighboring shifts into account while finding the optimal
relative shifts of each A-scan, thus making the aligned image very
smooth. After that, the horizontal shifts still exist and blur the edge
of layers.
3, correct the horizontal shifts of B-scans. This step is the focus of the
proposed algorithm. The challenges of horizontal shift correction are
the accuracy and speed of finding the peak of the evaluation values in
a large range. The hill-climbing algorithm is able to find the optimal
shifts within short time by comparing adjacent values in the hill peak.
4, discard the few unaligned images. A registration range threshold is
set to −32∼32 pixels. To register the images whose motion shifts exceed
the range is more difficult and consumes much more calculating time.
So a criterion is designed to judge whether the image has the shadow
different from the template image. This method ensures the sharpness
of retinal layers in the resultant image after averaging;
5, average the registered images. In the averaged image, the areas with
lower reflection intensity may be slightly darker by averaging the ran-
dom noises while the choroid layers are too bright. The retinal layers
require careful observation to distinguish, especially in the inner retina
area. So the averaged image is further enhanced using adaptive gamma
correction with weighting distribution(AGCWD) method to make the
layers more discernible.

2.2.1. Determine the template B-scan
Obviously, for a set of number 𝑛 OCT B-scans obtained in single

HD mode, a template image with minimal motion shifts and all retinal
structure features is beneficial to accelerate the alignment process. In
our lab-built OCT, 𝑛 can be tuned to 20∼50 at different scan frequen-
cies. A ‘‘reference image’’ is made by averaging all the B-scans, and the
single B-scan which is most similar to the reference image is selected
from the B-scans as the template image. Cross-correlation coefficient is
a criterion of similarity. The larger cross-correlation coefficient means
more similarity in the two images.
3

Next, the images lack of retinal structure information should not be
selected. Due to eye movement, the retinal structure will shift slightly in
most captured images. Compared with Fig. 2(a), the eye moved a little
when Fig. 2(b) was imaging. In a few images, the retinal structure may
be blocked by eyelashes as shown in Fig. 2(c), or be greatly deformed
by squeezing eye muscles involuntarily, or even not be captured with
eyes closed as shown in Fig. 2(d). Such B-scans should be excluded
before registration for higher efficiency of our algorithm. So 80%(ad-
justable) B-scans that have higher cross-correlation coefficient to the
template image are found. Then the selected images will be registered
one by one with the template image.

2.2.2. Vertical alignment: regularized dynamic programming
In this step, each A-scan of the image is aligned by calculating

he axial shifts optimally between the current image and the template
mage. Because of the influences of speckle noise and the vessels on the
etina, the shifts leading to the maximum cross-correlation coefficient
re not always optimal for correction. To solve this problem, we
tilize a graph-based method using regularized dynamic programming
lgorithm to find the shortest path [33]. Then a continuous and smooth
urve of the shifts caused by eye movements is described and the
orresponding axial displacements can be compensated well. Fig. 3
hows the averaging results of two images before and after axial
lignment. The image in the rectangular box is a magnified view.
e can clearly observe that axial shifts are registered well and the

ertical displacements are eliminated. The structure between layers is
ot as blurred as the image above. But by inspecting the sides of the
acular fovea, the horizontal shifts (what the short arrow denotes) still

bviously exist which are needed to be eliminated.

.2.3. Horizontal alignment: hill-climbing
The most key step of the method is the alignment of lateral mo-

ion in B-scans. Actually, the problem of horizontal registration is the
aximum search in the range of lateral shifts. The current image will

e shifted by −32 to 32 pixels to the right. The horizontal registration
ange we set is 65 pixels(about 780um in retina), when the shift value
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Fig. 3. (a) Average of the two unaligned images shown in Figs. 2(a) and 2(b). (b)
verage of the two vertically aligned images. The image in the rectangular box is a
agnified view of the area pointed by the long arrow. The displacements in the vertical
irection are eliminated, but the horizontal shifts (what the dashed arrow denotes) still
xist.

s negative, the image is shifted to the left. Vertical shifts need to be
ligned after every horizontal shift using the method above to calculate
cross-correlation coefficient accurately. The figure of merit in each

ateral shift is shown in Fig. 4(a). As can be seen from the figure, the
urve presents a unimodal characteristic in general and the algorithm
eeds to find the index of the maximum value. Considering the com-
utational time in real applications, it is not efficient to calculate the
oefficients of each position to find the maximum value in the range.
ill-climbing method is the typical approach to this case. At first, the

nitial direction and step length are assigned. After each step, the image
s horizontally shifted and vertically aligned, and the cross-correlation
oefficient is calculated at the same time. If the evaluation value of the
urrent position is greater than the evaluation value of the previous
osition, continue to move the step length in the same direction,
therwise reverse the moving direction and reduce the step length
ntil the peak position is found. In Fig. 4(a) we noticed the strong
scillation at the foot of the hill, but the ideal similarity measurement
urve should be a parabola. To avoid falling into the local maximum,
he initial step length of the hill-climbing method is increased to 16
ixels. Fig. 4(c) shows the average of the two images after horizontal
nd vertical alignment. Compared with the average of the two vertically
ligned images shown in Fig. 4(b), the edges of the macular fovea(white
rrows) are very sharp and the retinal layers are also preserved well.
he contrast is improved compared to the template image in Fig. 2(a).

We have also tried binary search method to quickly find the optimal
hift of the lateral alignment. Take half of the two ends of the registra-
ion range and compare these three evaluation values. Pick the largest
nd second-largest positions and continue to take half until the peak
osition is found. Compared with hill-climbing method, binary search
oes not require reentry on both sides of the peak, thus improving the
fficiency of the algorithm. But as mentioned above, the farther away
rom the peak, the more likely to be mistakes. So the binary search
ethod may find a wrong peak position. For example, as shown in

ig. 4(a), the value of −32 shift pixels is greater than the value of 32
hift pixels, and the binary search method will find the peak location
n [−32,0] pixel range while the proper peak location is in [0,32] pixel
ange. To avoid this, we choose the hill-climbing method in this paper.

.2.4. De-ghost averaging method and enhancement
The algorithm can register the images below the range threshold.

ut there may be some B-scans out of the range, which are not regis-

ered well. For these images with large eye movements, they may show p

4

double/ghost image after averaging. To make the edges sharper, a
riterion called de-ghosting is designed to remove the ghost image.

The registered image and the template image are smoothed using
edian filter at first. Then a difference image is obtained by subtracting

he two images. We use the probability density of each gray level in a
igital image to judge whether the difference image has a ghost. The
robability density function (𝜌) can be approximated by

(𝑙) = 𝑛(𝑙)∕𝐿 (1)

here 𝑛(𝑙) is the number of pixels at gray level 𝑙 and 𝐿 = 𝑀 ∗ 𝑁 is the
otal number of pixels in the image. The value of 𝑙 is from 0 to 255. The
umulative distribution function (𝜂) is based on 𝜌, and is formulated as:

(𝑙) =
𝑙

∑

𝑘=0
𝜌(𝑘). (2)

et the two cumulative distribution function thresholds 𝑡1, 𝑡2. Find the
irst gray level 𝑣1 whose 𝜂 is closest to 𝑡1, and find the second gray level
2 whose 𝜂 value is closest to the second parameter 𝑡2. It means that
he probability of pixels with gray levels less than or equal to 𝑣1, 𝑣2 in
he difference image is 𝑡1, 𝑡2, respectively. If the image is not aligned
ell, the unaligned region(where the ghost exists) will be shown in the
ifference image and the values of pixels in this region will be larger
han those in other regions. As values of most pixels in the difference
mage are small, we choose 0.9 < 𝑡1 < 1, 0.9 < 𝑡2 < 𝑡1 to recognize the
naligned area. 𝑉𝑑 is defined to judge the probability of ghosting and
t is calculated as follows:

𝑑 = 𝑣1 − 𝑣2. (3)

he larger the 𝑉𝑑 is, the higher probability of the ghost image will be.
f 𝑉𝑑 is greater than the threshold 𝑉𝑡 we set, we believe that ghosting
ill occur, and the current image is removed without participating

n subsequent averaging as a result. Then we take advantage of the
emaining images and a resultant image with high quality is obtained.
he flowchart of the de-ghosting algorithm is shown in Fig. 5(e).

The average of the registered images after horizontal and vertical
lignment without using the de-ghosting algorithm is shown in Fig. 5(a)
nd the average of the registered images using the de-ghosting algo-
ithm is shown in Fig. 5(b). The image in the rectangular box is a
agnified view of the area denoted by the white arrow. (c) and (d) are

he enlarged views of the circled area respectively. It can be observed
hat something like a shadow appears near the boundary of the retina
here the double arrow points. The shadow is what we call ghost.

n the resultant image using the de-ghosting algorithm, the ghost is
emoved and the edges are sharper than the averaged image without
sing our method. Although the image quality greatly improves after
veraging, the areas with lower reflection intensity may be slightly
arker by averaging the random noises while the choroid layers are
oo bright. The distinction of layers in retina is not obvious and the
ontrast is not satisfying as well.

To make the retinal layers more discernible, adaptive gamma cor-
ection with weighting distribution(AGCWD) method is applied for
urther contrast enhancement [44]. This method utilizes a progressive
ncrement of the original trend to adaptively modify the intensity of
he image and effectively avoid the over-enhancement of gamma cor-
ection. The result is shown in Fig. 6(a). Fig. 6(b) shows the magnified
mage of the rectangular box in (a). The contrast between layers is
nhanced and we can clearly distinguish nine layers of the retina.

. Experiments and results

.1. Experimental data acquisition

To evaluate the performance of the proposed method, normal and

athological SD-OCT data with only macula and with both macula 99
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Fig. 4. (a) The cross-correlation coefficients of each lateral shift. (b) Average of the two vertically aligned images. (c) Average of the two images after horizontal and vertical
alignment. The image in the rectangular box is a magnified view. It can be observed that the two images are registered perfectly.
Fig. 5. (a) Average of the registered images after horizontal and vertical alignment without using the de-ghosting algorithm. (b) Average of the registered images using the
de-ghosting algorithm. The image in the rectangular box is a magnified view of the area denoted by the white arrow. The circled area is the boundary of the retina. (c) and (d)
are the enlarged views of the circled area respectively. The area where the double arrow points is the boundary of the retina. There is a shadow next to the boundary in (c),
while the edge in (d) is sharper. (e) Flowchart of the de-ghosting averaging algorithm.
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and optic nerve head(ONH) were acquired by a classical spectral-
domain OCT system. A wideband superluminescent diode with center
wavelength of 840 nm and 3 dB bandwidth of 45 nm is used as light
source. The scan length is 1000 pixels corresponding to 6 mm with only
macula or 12 mm with both macula and ONH. The axial resolution
and lateral resolution are 5 μm and 12 μm in our lab-built OCT scanner
respectively. The codes were implemented in C++ and tested on a PC
with Intel i7-7700 CPU@3.60 GHz and 8 GB of RAM, where eight cores
were utilized.

3.2. Evaluation metrics

To quantitatively assess the image quality after the method we
proposed, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR),
peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and edge
preservation index(EPI) are used as the evaluation metrics. The metrics
are introduced as follows.

SNR is a measure of the noise level in the image [45], defined as:

SNR = 𝜇𝑏∕𝜎𝑏 (4)

here 𝜇𝑏 and 𝜎𝑏 are respectively the mean and the standard deviation
f the intensity in the background region.

CNR is a suitable criterion that reflects the contrast between signal
nd noise regions in the image. It is defined as:

NR = (1∕𝑅)
𝑅
∑

𝑟=1

(

𝜇𝑟 − 𝜇𝑏
√

2 2

)

(5)

𝜎𝑟 + 𝜎𝑏 w

5

here 𝜇𝑟 and 𝜎𝑟 are the mean and the standard deviation respectively of
he intensity from a set of 𝑅 different ROIs that were manually selected
n the image.

PSNR is a global quality criterion to estimate noise level, which is
omputed as [20]:

SNR = 20 ⋅ 𝑙𝑜𝑔10
𝐼𝑟_𝑚𝑎𝑥

√

1
𝐻

∑𝐻
ℎ=1(𝐼𝑟_ℎ − 𝐼𝑜_ℎ)2

(6)

where 𝐼𝑟_ℎ represents the intensity of the ℎth pixel in the resultant
image after our method, 𝐼𝑜_ℎ is the same ℎth pixel of the template
image, 𝐻 is the total number of the pixels, and 𝐼𝑟_𝑚𝑎𝑥 is the maximum
intensity value of the resultant image.

SSIM is also a global criterion that reflects the structural similarity
of the denoised image and the origin image [46], defined as:

SSIM =
(2𝜇𝐼𝑟𝜇𝐼𝑜 + 𝑐1)(2𝜎𝐼𝑟𝐼𝑜 + 𝑐2)

(𝜇2
𝐼𝑟 + 𝜇2

𝐼𝑜 + 𝑐1)(𝜎2𝐼𝑟 + 𝜎2𝐼𝑜 + 𝑐2)
(7)

here 𝜇𝐼𝑟, 𝜇𝐼𝑜 and 𝜎𝐼𝑟, 𝜎𝐼𝑜 are the mean and standard deviation of
he resultant image and the template image respectively, 𝜎𝐼𝑟𝐼𝑜 is their
ovariance, 𝑐1 and 𝑐2 are used to avoid dividing by zero.

EPI is the quantitative metric which indicates the ability of main-
aining details of edge in the denoised image [31]. Due to the lay-
red structure of the retina, we only focus on EPI in the longitudinal
irection and it is calculated as:

PI =
∑

𝑖
∑

𝑗 |𝐼𝑟(𝑖 + 1, 𝑗) − 𝐼𝑟(𝑖, 𝑗)|
∑

𝑖
∑

𝑗 |𝐼𝑜(𝑖 + 1, 𝑗) − 𝐼𝑜(𝑖, 𝑗)|
(8)

here 𝐼𝑟 and 𝐼𝑜 represent the resultant image and the template image,
hile 𝑖 and 𝑗 are coordinates in the longitudinal and lateral direction
 45



OPTICS: 126807

M. Liu, X. Chen and B. Wang Optics Communications xxx (xxxx) xxx

i
l

i1
o2
r3

34

5
a6
d7
m8
a9
a10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Fig. 6. (a) The resultant image in one set of 20 B-scans obtained in single-line HD mode after the proposed method. (b) The enlarged region from the area in the rectangular box
n (a). The edges of retinal layerings are preserved well. NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform
ayer; ONL: outer nuclear layer; ELM: external limiting membrane; IS/OS: inner and outer segment junctions of the photo-receptor; and RPE: retinal pigmented epithelium.
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n the image. In our experiments, we select three bands with height
f 7 pixels [31] centered at three boundaries (ILM, INL and RPE)
espectively as shown in Fig. 8(a).

.3. Performance of the proposed method

SNR and CNR are typical indicators for judging image quality. To
ssess the performance of each processing step and the performance of
ifferent numbers of B-scans in each set generally, these two evaluation
etrics are sufficient. We manually selected 3 groups of ROIs denoted

s red, green, blue rectangles which covered all retinal layers, macula
nd ONH. Each group has five small rectangles with 20 × 20 pixels

in the retinal region and one large rectangle in the noisy background
region as shown in Fig. 6(a).

A set of 20 B-scans obtained in single-line HD mode is used to test
the SNR and CNR performance of each step, shown in Fig. 7(a)(b). The
numbers on the 𝑥-axis indicate the processing steps in our algorithm.
It can be seen that SNR and CNR are improved in each step. The
vertical alignment makes a slight improvement in SNR, but a significant
change (155% improvement) is made after the horizontal adjustment
in step2. The CNR is improved by 5% after step1 but basically has
no growth in step2. After de-ghosting averaging in step3, the SNR is
roughly doubled and CNR is improved from 2 to 2.8. The AGCWD
method may reduce SNR from 4.5 to 4 in some regions, partly because
the method may also enhance the background noise, resulting in an
increase of standard deviation in the background part. But it has great
effects on CNR (18% improvement) to the image. The reason for the
large rise of ROI2 in step4 is that there are more brighter areas in ROI2,
and the enhancement of these areas is more obvious. With respect to
the average of two images before registration, it improved the SNR,
CNR by around 300% and 65%.

To test the performance in SNR and CNR as functions of the number
of averaged images, one set of 50 B-scans is employed. The exposure
time of imaging 50 B-scans in a set is the same as imaging 20 B-scans.
6

It can be seen from Fig. 7(c) that SNR increases with the number of
averaged images(𝑁). And the curve is similar to the square root of N
and exceeds after 5 images are averaged. Fig. 7(d) presents the CNR
improvement. When the number of averaged images is around 15, the
CNR improvement can achieve a factor of around 9. The curve becomes
flat after 15 images are averaged. This is also why the number of
B-scans in single-line HD mode of our lab-built OCT is set to 20.

3.4. Comparison to different registration methods

Three sets of data were randomly selected to compare the pro-
osed method with state-of-the-art approaches for image registra-
ion guided speckle suppression in OCT, including affine model [34],
ffine+dynamic programming(DP) [35], DP+binary search(BS) and
P+ hill-climbing(HC). Fig. 8 shows the registration guided despeck-

ing results of three sets of 20 OCT retinal images(data 1 in the first
ow shows the normal retinal image with macula and ONH, data

shows the normal retinal image with macula only, data 3 shows
he pathological retinal image with macula and ONH). The average
erformance metrics for all test data are listed in Table 1. The results
f the proposed method are higher than the methods compared in SNR,
SNR, SSIM and EPI, which is compliant with the better visual quality.

In the affine method [34], although the calculation time is shorter,
he images are not well registered in details. Therefore, a blurred av-
rage image is calculated shown in Fig. 8(b). Especially, the thin layer
bove the RPE complex, known as external limiting membrane(ELM)
annot be viewed clearly. The most evaluation metrics are relatively
ower except SNR and CNR because of more averaging images.

After the global and local registration [35], the edges in the aver-
ged image are sharper. But regularized dynamic programming method
s only able to correct the axial shifts, the local lateral shifts still exist.
lso, after the global alignment using affine model, the margin of the

mage will be missing, thus causing mistakes in local registration shown
n the second row of Fig. 8(c). The evaluation values are higher than
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Fig. 7. (a)(b) Improvements in signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as functions of the steps in our algorithm. 0: Average of two images before registration.
1: Average of two images after vertical alignment. 2: Average of two images after horizontal and vertical alignment. 3: Average of multiple images after the de-ghosting method.
4: Enhanced image after the AGCWD method. (c)(d) Improvements in signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as functions of the number of averaged images.

Fig. 8. The results of three sets of 20 OCT images. (a) The template image of each set. (b) Results using affine model. (c) Results using affine+DP. (d) Results using DP+BS.
(e) Results using DP+HC(proposed). In (b), the images are not well registered in details, thus making the boundaries blurred. In (c), the mistakes of local registration are shown
in the second row. In (d)(e), it is difficult to see the differences between these images at a glance. But with careful observation, the boundaries are slightly sharper in (e). The
proposed method achieved the best human visual perception.

7
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Table 1
Evaluation metrics in average for different methods.

Methods Time (s) SNR CNR PSNR (dB) SSIM EPI

Affine [34] 0.41 2.56 4.29 24.96 0.914 0.754
Affine+DP [35] 1.77 2.55 3.76 25.28 0.921 0.881
DP+BS 8.71 2.51 3.37 25.43 0.926 0.926
DP+HC(Proposed) 14.9 2.57 3.35 25.46 0.927 0.942

the results of the affine method but not the highest in PSNR, SSIM and
EPI. The sharpness of edges and boundaries is not satisfying.

In Fig. 8(d)(e), it is difficult to see the differences in the resultant
images of the DP+BS method and DP+HC method unless carefully
inspected. But in facts, as mentioned in 2.2.3, there are fewer mistakes
in DP+HC method, the edges are sharper and the metrics of DP+HC
are slightly higher than the metrics of DP+BS in the performance of
edge-preserving and structural similarity. We remove several images
with large eye movement which exceeds the registration range we set,
thus resulting in the lower metrics in CNR. But edges of the image
become sharper and details like vessels or smaller lesions can be better
observed in the resultant image of our method. In conclusion, com-
bining both subjective and objective evaluation criteria, the proposed
DP+HC method can obtain best results among the methods compared.

4. Conclusions and discussions

In this work, we propose a registration guided speckle suppression
method in single-line HD mode for ophthalmology OCT images. The
method well preserved the detailed structure information and achieved
further enhanced retinal layers visualization in the resultant image. The
method has a good generalization ability for different retinal OCT data
and can be applied in commercial scanners. Also, it can be extended
to registration and enhancement in other OCT data, such as dentistry
or dermatology which suffer the unintentional movement of teeth or
the vibration of skin. However, the images with deformed retina or
with large rotation are still a big challenge, which are discarded in this
algorithm. The current code is based on CPU computation which may
be accelerated based on GPU computation in the next.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Funding

This work was supported in part by the National Key R&D Program
of China under Grant 2018YFA0701700, the National Basic Research
Program of China (973 Program) under Grant 2014CB748600, and in
part by the National Natural Science Foundation of China (NSFC) under
Grant 61622114.

References

[1] D. Huang, et al., Optical coherence tomography, Science 254 (5035) (1991)
1178.

[2] M. Wojtkowski, High-speed optical coherence tomography: Basics and
applications, Appl. Opt. 49 (16) (2010) D30–61.

[3] M.R. Hee, J. Izatt, E. Swanson, D. Huang, J.G. Fujimoto, Optical coherence
tomography of the human retina, Arch Ophthalmol. 113 (3) (1995) 325–332.

[4] G.J. Jaffe, J. Caprioli, Optical coherence tomography to detect and manage
retinal disease and glaucoma, Am. J. Ophthalmol. 137 (1) (2004) 156–169.

[5] J.G. Fujimoto, W. Drexler, J.S. Schuman, C.K. Hitzenberger, Optical coherence
tomography (oct) in ophthalmology: Introduction, Opt. Express 17 (5) (2009)

3978–3979.

8

[6] M. Samieinasab, Z. Amini, H. Rabbani, Multivariate statistical modeling of retinal
optical coherence tomography, IEEE Trans. Med. Imaging PP (99) (2020) 1–1.

[7] B. Qiu, Z. Huang, X. Liu, X. Meng, Y. You, G. Liu, K. Yang, A. Maier, Q. Ren, Y.
Lu, Noise reduction in optical coherence tomography images using a deep neural
network with perceptually-sensitive loss function, Biomed. Opt. Express 11 (2)
(2020) 817–830.

[8] M. Shamouilian, I. Selesnick, Total variation denoising for optical coherence to-
mography, in: 2019 IEEE Signal Processing in Medicine and Biology Symposium
(SPMB), 2019, pp. 1–5.

[9] J.M. Schmitt, S.H. Xiang, K.M. Yung, Speckle in optical coherence tomography,
J. Biomed. Opt. 4 (1) (1999) 95.

[10] N. Iftimia, B.E. Bouma, S. Yun, G. Tearney, Analysis of speckle reduction in
optical coherence tomography by path length encoded angular compounding,
in: Biomedical Topical Meeting, Optical Society of America, 2004, p. FH30.

[11] H. Wang, A.M. Rollins, Speckle reduction in optical coherence tomography using
angular compounding by b-scan doppler-shift encoding, J. Biomed. Opt. 14 (3)
(2009) 030512.

[12] M. Pircher, E. Gotzinger, R. Leitgeb, A.F. Fercher, C.K. Hitzenberger, Speckle
reduction in optical coherence tomography by frequency compounding, J.
Biomed. Opt. 8 (3) (2003) 565.

[13] R.J. Zawadzki, B. Cense, Y. Zhang, S.S. Choi, J.S. Werner, Ultrahigh-resolution
optical coherence tomography with monochromatic and chromatic aberration
correction, Opt. Express 16 (11) (2008) 8126–8143.

[14] B.F. Kennedy, T.R. Hillman, A. Curatolo, D.D. Sampson, Speckle reduction in
optical coherence tomography by strain compounding, Opt. Lett. 35 (14) (2010)
2445–2447.

[15] M. Pircher, R.J. Zawadzki, Review of adaptive optics oct (ao-oct): principles and
applications for retinal imaging, Biomed. Opt. Express 8 (5) (2017) 2536–2562.

[16] A. Ozcan, A. Bilenca, A.E. Desjardins, B.E. Bouma, G.J. Tearney, Speckle
reduction in optical coherence tomography images using digital filtering, J. Opt.
Soc. Amer. A 24 (7) (2007) 1901–1910.

[17] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in:
International Conference on Computer Vision, 1998.

[18] H.M. Salinas, D.C. Fernandez, Comparison of pde-based nonlinear diffusion ap-
proaches for image enhancement and denoising in optical coherence tomography,
IEEE Trans. Med. Imaging 26 (6) (2007) p.761–771.

[19] M.A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C.Y. Mardin, R.P. Tornow,
Wavelet denoising of multiframe optical coherence tomography data, Biomed.
Opt. Express 3 (3) (2012) 572–589.

[20] L. Fang, S. Li, R.P. McNabb, Q. Nie, A.N. Kuo, C.A. Toth, J.A. Izatt, S. Farsiu,
Fast acquisition and reconstruction of optical coherence tomography images via
sparse representation, IEEE Trans. Med. Imaging 32 (11) (2013) 2034–2049.

[21] Z. Jian, L. Yu, B. Rao, B.J. Tromberg, Z. Chen, Three-dimensional speckle
suppression in optical coherence tomography based on the curvelet transform
- escholarship, Opt. Express 18 (2) (2010) 1024–1032.

[22] M. Esmaeili, A.M. Dehnavi, F. Hajizadeh, H. Rabbani, Three-dimensional
curvelet-based dictionary learning for speckle noise removal of optical coherence
tomography, Biomed. Opt. Express 11 (2) (2020) 586–608.

[23] L. Fang, S. Li, D. Cunefare, S. Farsiu, Segmentation based sparse reconstruction of
optical coherence tomography images, IEEE Trans. Med. Imaging 36 (2) (2017)
407–421.

[24] D.A. Jesus, D.R. Iskander, Assessment of corneal properties based on statistical
modeling of oct speckle, Biomed. Opt. Express 8 (1) (2017) 162–176.

[25] M. Li, R. Idoughi, B. Choudhury, W. Heidrich, Statistical model for oct image
denoising, Biomed. Opt. Express 8 (9) (2017) 3903–3917.

[26] I. Kopriva, F. Shi, X. Chen, Enhanced low-rank + sparsity decomposition for
speckle reduction in optical coherence tomography, J. Biomed. Opt. 21 (7)
(2016) 1–9.

[27] J. Cheng, D. Tao, Y. Quan, D.W.K. Wong, G.C.M. Cheung, M. Akiba, J. Liu,
Speckle reduction in 3d optical coherence tomography of retina by A-scan
reconstruction, IEEE Trans. Med. Imaging 35 (10) (2016) 2270–2279.

[28] X. Mao, C. Shen, Y. Yang, Image denoising using very deep fully convo-
lutional encoder-decoder networks with symmetric skip connections, CoRR,
abs/1603.09056, 2016.

[29] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising, IEEE Trans. Image Process.
26 (7) (2017) 3142–3155.

[30] A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, Y. Zhang, Three-dimensional
optical coherence tomography image denoising through multi-input fully-
convolutional networks, 108, 2019, pp. 1–8.

[31] Y. Ma, X. Chen, W. Zhu, X. Cheng, D. Xiang, F. Shi, Speckle noise reduction
in optical coherence tomography images based on edge-sensitive cGAN, Biomed.
Opt. Express 9 (2018) 5129.

[32] Y. Guo, K. Wang, S. Yang, Y. Wang, P. Gao, G. Xie, C. Lv, B. Lv, Structure-
Aware noise reduction generative adversarial network for optical coherence
tomography image, in: H. Fu, M.K. Garvin, T. MacGillivray, Y. Xu, Y. Zheng
(Eds.), Ophthalmic Medical Image Analysis, Springer International Publishing,

pp. 9–17. 129



OPTICS: 126807

M. Liu, X. Chen and B. Wang Optics Communications xxx (xxxx) xxx

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
[33] T.M. Jorgensen, J. Thomadsen, U. Christensen, W. Soliman, B. Sander, Enhancing
the signal-to-noise ratio in ophthalmic optical coherence tomography by image
registration—method and clinical examples, J. Biomed. Opt. 12 (4) (2007)
041208.

[34] D. Alonso-Caneiro, S.A. Read, M.J. Collins, Speckle reduction in optical coherence
tomography imaging by affine-motion image registration, J. Biomed. Opt. 16 (11)
(2011) p.117027.1–117027.5.

[35] H. Zhang, Z. Li, X. Wang, X. Zhang, Speckle reduction in optical coherence
tomography by two-step image registration, J. Biomed. Opt. 20 (3) (2015)
036013.

[36] M. Nasiriavanaki, S. Adabi, Z. Turani, E. Fatemizadeh, A. Clayton, Optical
coherence tomography technology and quality improvement methods for optical
coherence tomography images of skin: A short review, Biomed. Eng. Comput.
Biol. 8 (2017).

[37] M. Azimipour, J.V. Migacz, R.J. Zawadzki, J.S. Werner, R.S. Jonnal, Functional
retinal imaging using adaptive optics swept-source OCT at 1.6 MHz, Optica 6
(3) (2019) 300–303.

[38] M. Azimipour, R. Jonnal, J. Werner, R. Zawadzki, Coextensive synchronized
slo-oct with adaptive optics for human retinal imaging, Opt. Lett. 44 (2019)
4219.

[39] A. Camino, P. Zang, A. Athwal, S. Ni, Y. Jian, Sensorless adaptive-optics
optical coherence tomographic angiography, Biomed. Opt. Express 11 (7) (2020)
3952–3967.

[40] A. Baghaie, Z. Yu, R.M. D’Souza, Involuntary eye motion correction in retinal
optical coherence tomography: Hardware or software solution?, Med. Image
Anal. 37 (2017) 129–145.
9

[41] M.F. Shirazi, E. Brunner, M. Laslandes, A. Pollreisz, C.K. Hitzenberger, M.
Pircher, Visualizing human photoreceptor and retinal pigment epithelium cell
mosaics in a single volume scan over an extended field of view with adaptive
optics optical coherence tomography, Biomed. Opt. Express 11 (8) (2020)
4520–4535.

[42] S.B. Stevenson, A. Roorda, Correcting for miniature eye movements in high-
resolution scanning laser ophthalmoscopy, in: F. Manns, P.G. Söderberg, A.
Ho, B.E. Stuck, M.B. M.D (Eds.), Ophthalmic Technologies XV, 5688, SPIE,
International Society for Optics and Photonics, 2005, pp. 145–151.

[43] H.C. Hendargo, R. Estrada, S.J. Chiu, C. Tomasi, S. Farsiu, J.A. Izatt, Automated
non-rigid registration and mosaicing for robust imaging of distinct retinal
capillary beds using speckle variance optical coherence tomography, Biomed.
Opt. Express 4 (6) (2013) 803–821.

[44] S.C. Huang, F.C. Cheng, Y.S. Chiu, Efficient contrast enhancement using adaptive
gamma correction with weighting distribution, IEEE Trans. Image Process. A
Publication of the IEEE Signal Processing Society 22 (3) (2013) 1032–1041.

[45] Y. Watanabe, H. Hasegawa, S. Maeno, Angular high-speed massively parallel
detection spectral-domain optical coherence tomography for speckle reduction,
J. Biomed. Opt. 16 (6) (2011) p.060504.1–060504.3.

[46] Zhou Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment:
from error visibility to structural similarity, IEEE Trans. Image Process. 13 (4)
(2004) 600–612.


	Axial and horizontal registration guided speckle suppression in single-line HD mode for retinal optical coherence tomography images
	Introduction
	Methods
	Single-line HD mode
	Image averaging method
	Determine the template B-scan
	Vertical alignment: regularized dynamic programming
	Horizontal alignment: hill-climbing
	De-ghost averaging method and enhancement


	Experiments and results
	Experimental data acquisition
	Evaluation metrics
	Performance of the proposed method
	Comparison to different registration methods

	Conclusions and discussions
	Declaration of competing interest
	
	References


